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Abstract—In the last decade, the adoption of HTTPS for
securing Internet communications increased by up to 90%.
Threat actors adapted to this transition to HTTPS by writing
more sophisticated malware that encrypt their communications
with command-and-control centers. On the other hand, network
security appliances are limited by the impossibility of inspecting
packet payloads for deeper investigations. In this paper, we
propose a cybersecurity analytics which monitors encrypted
network flows and extracts features to detect possible occurring
attacks and anomalies, by combining machine learning with a
statistical approach. The analytics is embedded in a network
security monitoring platform, named aramis®, which provides
cybersecurity analysts with a comprehensive overview of the
monitored network and its traffic to support them in the
identification of potentially malicious activities taking place. The
detection capabilities of the proposed analytics have been tested
both on a benign and a malicious dataset. This latter has
been assembled by our security analysts and includes packet
captures of samples and tools, respectively, developed and used by
worldwide leading threat actors. Results show 96.6% accuracy on
the malicious dataset, with a false positive rate approximatively
equal to 0.001% when the analytics monitors legitimate encrypted
network traffic.

Index Terms—encrypted malware communications, passive
network analysis, anomaly detection, machine learning, SSL, JA3

I. INTRODUCTION

Nowadays the vast majority of Internet traffic is encrypted
thanks to a cross-industry effort involving companies both
from private and public sector. This effort started in the ’90s
but, only in recent years, the percentage of HTTPS encrypted
network traffic has experienced a significant increase [1], up
to achieving a percentage ranging between 80% and 90% [1]–
[5]. Clearly, encrypted communication adoption varies from
country to country and may increase quickly in some regions
with respect to others [5].

The implications are twofold: on the one hand, threat actors
adapted to the transition from HTTP to HTTPS, at a higher
economic cost, performing more sophisticated and concealed
attacks; on the other hand, network security appliances are
limited by the impossibility of inspecting packet payloads for
deeper investigations. The combination of these two factors, in
2020, enabled threat actors to perform malware campaigns re-
lying on HTTPS for delivering malware, contacting command-

and-control activity, and exfiltrating data [6]. In particular,
just in 2020, 67% of malware has been delivered via en-
crypted HTTPS connections [7]. In addition, data exfiltration
and sensitive information stealing have always represented a
challenging threat for companies [8]–[10], primarily from a
financial point of view [6]. With the mainstream adoption
of secure communications (also used by attackers), specific
countermeasures need to be taken into account.

Both academia and industry have proposed different so-
lutions to cope with encrypted traffic, as discussed more in
detail in Section II of this paper. However, a key point that
differentiates the various approaches is their level of intrusive-
ness: some approaches work directly with encrypted traffic,
while others decrypt and re-encrypt data to be inspected.
The first ones do not decipher encrypted communications,
but consider exchanged data and metadata. For this reason,
these approaches are not able to detect compliance and policy
violations or possible security breaches by examining traffic
payloads. Conversely, there exist approaches implemented in
security products, like [11], which decrypt secure communi-
cations and allow to analyze payloads. However, decryption
and encryption processes insert a significant computational
overhead that negatively impacts the performance of these
security products [4]. As discussed later in the paper, the
protocols on which HTTPS relies on provide many negotiable
cipher suites that are not necessarily supported by a specific
security product [4]: according to [6], 60% of organizations is
not prepared to decrypt HTTPS traffic efficiently.

In this context, we propose an advanced cybersecurity
analytics (ACA) which analyzes HTTPS exchanged protocol
messages and extract data and metadata to detect possible
occurring attacks and anomalies. More in detail, the ACA ex-
tracts metadata contained in the fields of X.509 certificates and
SSL/TLS metadata and has been designed to detect anomalies
taking place during a SSL/TLS handshake between a client and
an external server. The analytics combines an unsupervised
machine learning technique with a statistical approach: after
characterizing the SSL/TLS flow with selected features, a
machine learning module isolates anomalous connections and
an anomaly score is calculated in order to alert security
analysts about potential malicious communications.



The proposed algorithm is embedded in aramis® (Aizoon
Research for Advanced Malware Identification System), a
commercial network security monitoring platform able to
collect, process, and elaborate network flows in near-real time
in order to detect and investigate potential malicious or anoma-
lous activities. Network data are processed to detect potentially
malicious activities and, in case of successful detection, two
different kinds of notifications can be issued to SOC analysts:
the first one involves the observation in the network traffic
of one, or more, indicators of compromise, while the second
type of alerts comes from aramis®’ ACAs. Each ACA is a
combination of different statistical approaches and unsuper-
vised machine learning algorithms. Starting from these alerts,
analysts can rely on the platform’s dashboards, that offer drill-
down capabilities, to further investigate alert notifications by:
correlating alerts produced by other analytics (e.g., detection
of malicious payload downloads from compromised sites), or
analyzing similar behaviors throughout the monitored network
(e.g., machines sharing the same user agent or contacting the
same command-and-control center).

The rest of the paper is organized as follows: Section II
discusses related work, while Section III introduces basic
notions that will be later used to detail the proposed approach
(Section IV). The experimental evaluation is reported in Sec-
tion V and Section VI presents a real-world case study. Finally,
Section VII concludes the paper.

II. RELATED WORK

The use of encryption poses significant challenges to net-
work threat detection due to the inapplicability of traditional
signature-matching techniques and the increasing number of
malware authors taking advantage of it, as outlined in Sec-
tion I.

The security community has therefore researched in two
main directions: decryption of traffic flows [11], [12] and
use of network-flow-based metadata [13]. Since decrypting
network traffic and applying traditional signature based ap-
proaches to detect cyber threats is not always possible, not only
due to privacy and legal concerns, but also for the introduced
considerable overhead (as discussed in Section I), the com-
bination of passive data extraction from a monitored network
and subsequent application of machine learning techniques on
SSL/TLS metadata has more and more become an appealing
solution [6], [14]–[16]. As an example, [17] performed an
analysis over millions of SSL/TLS encrypted flows and a study
on 18 malware families by extracting meaningful features from
data. With the widespread use of machine learning techniques,
research focus has hence moved on the feature engineering
tasks [18], [19]. Two different groups of features may be
currently found in literature: statistical and sequential features.
Statistical features contain but are not limited to flow-level
metadata, packet length distributions, time distributions, byte
distributions and SSL/TLS header information [17]. An exam-
ple of deep learning framework combining statistical features
can be found in [19]. Sequential features are obtained from the
raw flow sequences by learning the generation probabilities of

flows. By representing the traffic flow sequence via Markov
transformation matrix, [20] clustered certificate lengths and
first packet lengths to improve the classification performance
under a second-order Markov model.

The approach we present and evaluate in the next sections
passively extracts both statistical and sequential features from
network flows to detect anomalies in a monitored network.
Differently from [20], we leverage machine learning to rec-
ognize SSL/TLS handshakes deviating from the ones usually
established in the network. Similar to [6] the proposed ana-
lytics establishes a baseline of usually secure connections, by
using a different set of features.

III. BACKGROUND

A. SSL and TLS protocols

SSL and TLS protocols allow two machines to authenti-
cate and establish a session key, created to cryptographically
protect the remainder of the session [21]. Authentication is
performed by means of certificates, which are signed messages
reporting the identity of either an individual, a host, or an
organization. In the World Wide Web, certificates are typically
signed by trusted nodes, called Certification Authorities (CA).
The standard used for SSL/TLS protocols to define public key
certificates’ format is X.509, version 3 [22]. The advanced
cybersecurity analytics we propose in this paper analyzes a
subset of all the available fields in X.509 certificates, that are
briefly described in the following. The signature field contains
both the algorithm identifier and hash function used by the CA
for signing the certificate (e.g., sha-1WithRSAEncryption). On
the other hand, the validity field stores the time interval during
which the CA ensures that it will keep information about
the certified entity, specified in the subject name field. Each
X.509 certificate contains, respectively, information about the
subject public key and the issuer: the first specifies the public
key itself and the algorithm applied for generating it (e.g.,
rsaEncryption), while the second reports the name of the CA
that issued the public-key certificate.

B. One-class SVM

The original formulation of Support Vector Machines
(SVMs) is related to the resolution of supervised tasks, but
the one-class SVM has been shown to represent a suitable
choice in the context of anomaly detection [23]. It is defined as
a boundary-based anomaly detection method, which modifies
the original SVM approach by extending it in order to deal
with unlabeled data. Like traditional SVMs, one-class SVMs
can also benefit of the so called kernel trick when extended
to non-linearly transformed spaces, by defining an appropriate
scalar product in the feature space.

C. Jenks’ natural breaks optimization

This optimization method, applied to power-law distribu-
tions, divides input instances in classes by minimizing within-
class variance, while maximizing between-class variance [24].
The goodness-of-variance-fit (gvf) value expresses the diver-
gence between predicted classes and observed values. Jenks’



Fig. 1. SSL/TLS analytics overview.

natural breaks optimization consists in iteratively computing
the gvf by moving one data value from the class with the
largest deviations from the mean to the class with the lowest
ones, until the sum of the within-class deviations reaches a
minimum [25].

IV. SSL/TLS ANALYTICS

The proposed approach aims at detecting possible anomalies
occurring during a SSL/TLS handshake between a client,
located inside the network monitored by the software plat-
form outlined in Section I, and an external server. We recall
that SSL/TLS protocols enable two machines to securely
communicate over an unprotected network (e.g, Internet), as
mentioned in Section III-A.

Detection of possible anomalies may be performed by
simply analyzing the information exchanged during SSL/TLS
handshakes, e.g., by examining the issuer and subject fields of
a certificate. Another element that requires particular attention
is represented by self-signed X.509 certificates: in this case,
the issuer and the subject fields share the same CA value, and
the private key employed by the CA to sign the certificate
corresponds to the public key certified within the certificate
itself [22]. The challenge is here represented by the fact that
self-signed certificates can be included in certification paths
and can be legitimately used by CAs to advertise information
about their operations. However, it is an ever-growing common
practice for malware to communicate with their command-and-
control servers using a self-signed certificate.

Therefore, the SSL/TLS detection analytics examines infor-
mation contained in X.509, SSL, and TLS exchanged protocol
messages. As mentioned in Section I, aramis® is designed to
collect data and metadata related to all the packets transmitted
in the monitored network. After data collection, aggregation,
and filtering, the SSL/TLS analytics extracts, for each SS-
L/TLS flow, features able to capture possible anomalies in
the communication. Selected features are fed to a machine
learning module, which detects suspicious connections, whose

{
" v e r s i o n " : " TLSv12 " ,
" se rve r_name " : " teams . m i c r o s o f t . com" ,
" c u r v e " : " s e c p 3 8 4 r 1 " ,
" s u b j e c t " : "CN= teams . m i c r o s o f t . com" ,
" i s s u e r " : "CN= M i c r o s o f t RSA TLS CA 01 ,

O= M i c r o s o f t C o r p o r a t i o n , C=US" ,
" s e r v e r _ c e r t _ c h a i n " : [

{
"md5" : "28211 f1f8a50966b518ec39d3546d57d " ,
" sha1 " : "4 a263f1f39dd526901987ecdb09e2d1297e2bc51 " ,
" x509 " : {

" v e r s i o n " : 3 ,
" k e y _ t y p e " : " r s a " ,
" k e y _ a l g " : " r s a E n c r y p t i o n " ,
" k e y _ l e n g t h " : 2048 ,
" s i g _ a l g " : " sha256WithRSAEncrypt ion " ,
" n o t _ v a l i d _ b e f o r e " : 1606847889.0 ,
" n o t _ v a l i d _ a f t e r " : 1638383889.0 ,
" s u b j e c t " : "CN= teams . m i c r o s o f t . com" ,
" i s s u e r " : "CN= M i c r o s o f t RSA TLS CA 01 ,

O= M i c r o s o f t C o r p o r a t i o n , C=US" ,
}

}
] ,
" j a 3 " : "7 f805430de1e7d98b1de033adb58cf46 " ,
" j a 3 s " : "0 f14538e1c9070becdad7739c67d6363 " ,
" c i p h e r " : "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" ,
" machineDes t " : "TEAMS. MICROSOFT .COM"

}

Fig. 2. Sample of a communication log including both TLS and X.509
information. For space constraints, in the server certification chain we kept
only the end-user certificate.

anomaly score is eventually computed and possible alerts are
signaled to security analysts.

A. General approach and feature extraction

Figure 1 reports the general structure of the proposed
detection method: network traffic involving secure connec-
tions is monitored, collected and stored in a database. This
knowledge base is periodically accessed in order to retrieve
updated information about established encrypted outbound
connections, i.e., data and metadata about X.509, SSL, and
TLS exchanged protocol messages.

Data and metadata related to the same communication
between a client and a server are then aggregated: indeed, a
communication is eventually described by complementary in-
formation given by both SSL/TLS and X.509. Figure 2 shows
an example of an aggregated log comprising both TLS and
X.509 information, related to a secure connection established
with the business communication platform Microsoft Teams1.
For privacy reasons, we omitted from the log all the sensitive
information as, for example, the IP addresses involved in the
communication. It is important to note that each log contains
a subset of the information briefly discussed in Section III-A.

The filtering phase allows to remove from input data in-
formation about connections to known and popular domains,
servers, CDNs, and X.509 certificates trusted by the com-
pany where aramis® is deployed. It is worth noting that
the platform itself enriches the whitelists database by taking
trace of popular secure connections and highly visited servers,

1Microsoft Teams:https://teams.microsoft.com/



TABLE I
LIST OF NUMERIC FEATURES EXTRACTED FROM SSL/TLS FLOWS

Feature ID Numeric features Fn

n0 JA3 popularity (see IV-B for further details)
n1 Server certificate chain popularity (see IV-B for further details)
n2 Number of self-signed certificates normalized over a value indicating the maximum length of a certificate chain (e.g., 100)
n3 Number of expired certificates normalized over a value indicating the maximum length of a certificate chain (e.g., 100)

n4
Number of certificates reporting an anomalous validity (e.g., a validity less than 3 days) normalized over a value indicating the maximum length of a
certificate chain (e.g., 100)

n5 Number of certificates signed with a weak signing algorithms normalized over a value indicating the maximum length of a certificate chain (e.g., 100)

TABLE II
LIST OF BOOLEAN FEATURES EXTRACTED FROM SSL/TLS FLOWS

Feature ID Boolean features Fb

b0 The server certificate (or a certificate stored in the server certificate chain) is self-signed
b1 The certificate signed by the server (or a certificate stored in the server certificate chain) is expired
b2 The subject contained in the end-user certificate has an invalid top-level domain
b3 The country listed in the end-user certificate is not valid
b4 One of the certificates in the server certificate chain has an anomalous validity (e.g., a validity less than 3 days)
b5 One of the certificates in the server certificate chain relies on a weak signing algorithm
b6 The server name is not a sub-domain of the end-user subject’s certificate

b7, b8, b9 The server name, the subject, and the issuer of the end-user certificate might be randomly generated (see IV-C for further details)

through two different signatures: ‘JA3’ hashes and server
certificate chains. A JA3 hash is defined as a fingerprint of a
SSL/TLS flow generated by a client, built from the following
handshake information: SSL/TLS protocol version, type of
employed cypher, possible extension values [26], enumeration
of the supported elliptic curves, and the point formats such
curves can parse [27]; hexadecimal values representing this
information are concatenated and then hashed trough an MD5
function. On the other hand, server certificate chains allow to
identify communications with specific servers, encoded using
MD5 hashes: each SHA1 hash identifying a specific certificate
in the chain is concatenated with the other chain’s SHA1s,
which identify the other certificates in the chain. Concatenated
SHA1s are then hashed using an MD5 function.

In order to create the feature space to be used by the ma-
chine learning algorithm and analytics’ modules, the SSL/TLS
analytics extracts, for each SSL/TLS flow, both numeric and
boolean features which are listed in Table I and II. These
chosen features are able to capture signals indicating possible
anomalies in the certification chain sent by server to the client.

B. Popularity calculation

Regarding the JA3 and server certificate chain popularity
(features n0 and n1 in Table I), term frequency metrics
calculation is applied [28]. In particular, both the JA3 hashes
and the received server certificate chains are generalized as
terms t0, . . . , ti, respectively generated and exchanged during
SSL/TLS handshakes in a predefined time interval ∆t. As
an example, one can compute the popularity of a specific
JA3 hash h, using one of the standard term-frequency tf
definitions, commonly applied in information retrieval:

tf(h) =
ch∑

h′∈H ch′
(1)

where ch is the number of occurrences of h divided by the
total number of hashes |H| observed in ∆t. Analogously, it

is possible to compute the popularity of a server certification
chain scc through tf(scc). Popularity values are normalized
and used to filter out either popular secure connections or
highly visited servers.

C. Randomness calculation

Randomness of the server name, the subject, and the issuer
of the end-user certificate (used to extract features b7,b8 and
b9 in Table II) is intended to measure how much their mono-
grams and bigrams characters distributions are “close” to the
ones associated to randomly generated strings, according, for
example, to the English language characters distribution (note
that also other languages can be configured). Such measure
is obtained by employing the same approach of an open-
source random string detector based on a 2-character Markov
chain [29]: this system is trained on pairs of subsequent
characters extracted from few megabytes of English text to let
the Markov chain learn which is the probability distribution
of the appearance of a character following a given one. Thus,
the trained Markov chain fed with an input string produces an
output probability p indicating how much the string follows
the language distribution: the resulting probability grows as
the similarity to English words gets higher.

D. Anomaly detection

Numeric features and a subset of boolean features – namely
FSVM := {Fn ∪ b7, b8, b9} – are given in input to the one-
class classifier described in Section III-B. In particular, we rely
on a R library implementation of the one-class SVM that uses
a radial basis function kernel. SVM hyperparameters ν and γ
have been tuned to minimize generalization error, as discussed
in [30], and respectively set to 0.5 and 0.1. Moreover, we
remove from FSVM all those features whose variance is equal
to 0, because they do not add any information to the built
model. The model creation phase [31] is performed on the
collected historical data, which compose the training set used
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Fig. 3. Distribution of JA3 hash occurrences in the monitored network,
observed during a period of 20 days. For privacy reasons, on the x axis,
identifiers associated to unique JA3 hashes are reported instead of actual
hashes.

to train the model. Models are periodically updated using 6
hours of secure traffic data. Outputs therefore represent secure
connections which deviate – in one or more features – from
the ones normally observed in the monitored network. Built
machine learning models can be also helpful in detecting zero-
day attacks, because malicious traffic samples are not required
for the learning phase.

It is worth noting that connections identified as anomalous
by the classifier are not necessarily malicious: for example,
legit self-signed company certificates are correctly detected
by the SVM module as anomalous, but they do not represent
a cyber threat. To reduce false positives and be sure of
analyzing only suspicious communications that, hence, are
not widespread across the monitored network, the analytics
filters out popular JA3 hashes. Since JA3 frequencies follow
the power law distribution, as shown in Figure 3, we apply the
Jenks’ natural breaks optimization (described in Section III-C)
to extract the least popular JA3s and take into account only
rare JA3 hashes. By employing a variant of an R open-
source algorithm for computing Jenks’ natural breaks [32],
the analytics first calculates which is the optimum number
of breaks that allows to achieve the maximum goodness-of-
variance-fit. Then, by running again the optimization method
and providing the optimum number of breaks to divide input
hashes in classes, the analytics selects all the JA3 hashes
included in the last class (i.e., the least popular). At this point,
all the hashes having a term frequency (see Equation 1) higher
than the one of the least popular JA3 hashes are filtered out.
After filtering, the remaining term frequencies are normalized
by dividing them by the maximum observed frequency.

As shown in Figure 1, flows detected as suspicious by the
SVM and whose JA3 hashes are not popular are fed to a
second analysis module that computes an anomaly probability
AF . The module combines configurable weights and two
different parametric generalized logistic functions, which both
allow to tune AF according to the needs of SOC analysts.
In other words, a weight wi is associated to each one of
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Fig. 4. Example of two generalized logistic functions that convert popularity
values into anomaly probabilities. The two functions have been respectively
obtained using the following parameters: K = 0.95, S = 0, C = Q = 1.0,
x0 = 0.125, B = 95 , ν = 5 and K = 1.0, S = 0, C = Q = 1.0,
x0 = 0.5, B = 15 , ν = 2.5.

the boolean features Fb listed in Table II and an anomaly
probability AF is computed using a weighted arithmetic mean:
AF =

∑|Fb|
i=1 wi · b′i, where b′i represents the result of the

conversion of a boolean value into either a 0 or 1, depending
on its truth value (i.e., 0 if false, 1 otherwise). Each weight
wi is adjusted according to the nature of the traffic analyzed
by aramis®2. As an example, a SOC analyst may set a
higher weight to the feature representing whether the end-
user certificate is self-signed: if the monitored network does
not employ self-signed certificates, then the security analyst
may assign a higher weight to this feature in order to spot
possible connections relying on a self-signed certificate.

On the other hand, JA3 and server certificate chain pop-
ularities are converted to anomaly probabilities using two
generalized logistic functions of the form

K − K − S
(C +Qe−B(x−x0))1/ν

This type of functions was initially proposed by Richards in
1959 to model plants growth rate [33], but it turned out to be
able to generate more flexible S-shaped curves. In the above
equation x are rank values, K is the upper asymptote, S is
the lower asymptote value, C, Q, and x0 are proper constant
values, B is the growth rate, and ν affects the direction along
which maximum growth occurs. Figure 4 shows an example
of two logistic functions, deployed to production, in which
the first one has been specifically designed to filter out known
and/or highly visited external servers (i.e, whose certification
chain popularity is greater or equal to 15%) by assigning them
an anomaly probability equal to 0.

Anomaly probabilities resulting from the application of
logistic functions are first averaged between them, and then
with AF to obtain the final anomaly probability A. Finally,

2Weights wi reflect the importance given by SOC analysts to the corre-
sponding features b′i; for the experimental evaluation, assigned weight values
are w0 = 0.2, w1 = w4 = w5 = w6 = 0.13, w2 = w3 = 0.005,
w7 = w8 = w9 = 0.09.



TABLE III
MALWARE PACKET CAPTURES SUMMARY

Type Family Threat actor Domain Year Stage Am

Banking trojan, info
stealer Emotet Mummy Spider,

Mealy Bug

womenempowermentpakistan.com, fynart.com, www.
laminatedtube.com, ygpryd.com, thammynhp.com,
shop.homenhealthy.com, rocketviral.com, www.campus
camarafp.com, snjwellers.com, pesquisacred.com,
theaffiliateincome.com, stars-castle.ir, travianbot.net,
lamajesteindustries.com, nanettecook.org

2020-
2021

Dropper loading 0.48

Info stealer, bank-
ing malware Ursnif Golden Cabin - 2021 Callback 0.63

Info stealer, bank-
ing malware IcedID Gold Cabin marslayot.top, garrozalibbo.click 2021 Callback 0.70

Info stealer, bank-
ing malware Bazarloader UNC1878 - 2021 Callback 0.60

Banking trojan Trickbot
Graceful Spider,
UNC1878,
Wizard Spider

api.ip.sb, barionexis.top, ident.me, api.ipify.org, liverpo
oldabestteamoftheworld.com 2021

Information gather-
ing, dropper load-
ing, and data exfil-
tration

0.62

Info stealer Lokibot
Sweed, The Gorgon
Group

makiyazhdoma.ru, itsssl.com, hiokurl .com, hyp.ae,
pxlme.me bakercost.gq 2021 Dropper Loading 0.49

Info stealer AgentTesla Sweed

api.ip.sb, iplogger.[ru|org], ipinfo.io, 2no.co, connec
tini.net, [a|b].xyzgame.cc, fb.xiaomishop.me,
spark.lightburst.xyz, ezps.co.uk, shadow-
vpn.net, iplis.ru, p6701.softemstore.xyz,
2no.co, www.profitabletrustednet9work.com,
bucket.swiftlaunchx.com

2021
Information gather-
ing and dropper
loading

0.70

Info stealer AZORult The Gorgon Group tradecontract.es, telete.in, iplogger.org, music-s.xyz 2021 Dropper loading 0.41
Remote Access
Trojan Jssloader FIN7 injuryless.com 2021 Dropper loading 0.41

Remote Access
Trojan AsyncRAT - - 2021 Dropper loading 0.63

Dropper Chopstick APT28 cdnverify.net, mvband.net 2020 Dropper loading 0.81

Dropper Gamaredon
Downloader Gamaredon hastebin.com religonclothes.com 2020

Dropper loading
and callback 0.50

Coin miner Coinminer - iplogger.org 2020
Information gather-
ing 0.51

Ransomware GandCrab - www.billerimpex.com 2018 Callback 0.60

TABLE IV
TOOL PACKET CAPTURES SUMMARY

Tool Threat actor License Capabilities Am

Empire
CopyKittens, FIN10, APT19, APT33, Turla, Wirte, Silence,
Frankenstein, Wizard Spider, Muddy Water, APT41, Indrik
Spider

Open-source Remote administration and post-exploitation framework 0.69

Cobalt Strike
APT 29, APT32, APT41, Anunak, Cobalt, Codoso, Copy-
Kittens, DarkHydrus, FIN6, Leviathan, Mustang Panda, Shell
Crew, Stone Panda, UNC1878, UNC2452, Winnti Umbrella

Commercial Penetration testing product that allows an attacker to deploy an
agent on the victim machine 0.51

Meterpreter3 - Open-source
Attack payload that provides an interactive shell from which an
attacker can explore the target machine and execute code 0.60

A is further increased by using a configurable weight wN
(wN = 0.25 in the experimental evaluation reported in
Section V) if any of the features observed in the test set
has not been seen before: as mentioned in Section IV-D,
we filter out features in FSVM whose variance is 0 and, for
this reason, it may happen that some features observed in
the test do not appear in the trained model. As an exam-
ple, aramis® may not have seen during the SVM training
time an expired certificate; thus, if the analytics observes a
secure communication involving an expired certificate, then
such anomaly is addressed by increasing the overall anomaly
probability A by using wN . If the anomaly probability A is
above a configurable threshold Ath, then the security analysts
are notified about suspicious secure connections established
with external servers located outside the monitored network.
Ath can be dynamically configured to provide in output only
anomaly probabilities approximately greater than 16%, 30%,

44%, and 62%, according to SOC’s analysis requirements.

V. EXPERIMENTAL EVALUATION

For the experimental evaluation of the proposed approach,
we collected both a malicious and a benign dataset. The first
one is constituted by packet captures generated from samples
and tools, respectively, developed and used by worldwide
leading threat actors [7], [34]–[36], which have been injected
in aramis® in order to be processed and analyzed as ordi-
nary traffic. Packet captures of samples and tools have been
selected by our security analysts from three online malware
analysis services, namely ANY.RUN4, Hybrid Analysis5 and

3Even though Meterpreter is not a tool used by threat actors, it allows to
craft fake self-signed certificates

4ANY.RUN: https://app.any.run/
5Hybrid Analysis: https://www.hybrid-analysis.com/



TABLE V
LEGITIMATE NETWORK TRAFFIC DATASET SUMMARY

Statistics Count One-hour mean
Total number of SSL/TLS logs 2M 3,478
Total number of machines 578 58
Total number of unique server names 19,421 344
Total number of unique JA3 233 39
Total number of unique JA3s 487 80
Total number of unique cert. chain SHA1s 7,561 257

Malware Traffic Analysis6. Chosen samples contain, among le-
gitimate network traffic, SSL/TLS malicious communications.
Tables III and IV report a summary of the malicious assembled
dataset: for malware, we indicate type and family while, for
tools, we report their licenses and corresponding tool capabil-
ities. In both cases, we detail threat actors according to the
definitions given by MITRE7 and Malpedia8. Analogously to
FireEye [37], we listed also malware stages to better character-
ize and describe collected samples: dropper loading, callback
and data exfiltration. In the majority of analyzed samples,
SSL/TLS connections have been established for downloading
droppers and contacting command-and-control centers. In ad-
dition to the stages described by FireEye, we introduce the
information gathering stage, that represents a phase in which
malware leverage external services to investigate and reveal
external IPs of compromised machines. On the other hand,
the benign communication dataset gathers legitimate SSL/TLS
communications observed in a real corporate network during
a period of 24 days. Table V summarizes general statistics
about the network traffic taken into account. Both datasets have
been injected in a controlled network environment provided
with aramis®, the network security monitoring platform briefly
discussed in Section I, to respectively measure the accuracy of
the proposed approach and to evaluate the false positive rate
on legitimate secure connections. Performed evaluations have
been split because the malicious dataset is divided in samples,
while the benign one in connections. Hence, depending on the
input dataset, quantities of true and false positives and true
and false negatives are, respectively, referred to either mal-
ware samples or benign connections. As an example, for the
malicious dataset, true positives are defined as the number of
correctly detected malware/tool samples, while false negatives
as the number of malware/tool samples incorrectly labeled as
benign. In this case, false positives and true negatives are equal
to 0 because no benign sample is included in the malicious
dataset. Analogous considerations apply to the benign dataset.

The accuracy measured on the malicious dataset, which
includes 59 samples collected by our security analysts, is
equal to 96.6%. On the other hand, the false positive rate
calculated on the benign network traffic is approximately
equal to 0.001%. Tables III and IV report in column Am
the mean of maximum anomaly probabilities computed when
analyzing malicious samples. It is worth noting that, even if

6Malware Traffic Analysis: https://www.malware-traffic-analysis.net/
7MITRE: https://attack.mitre.org/
8Malpedia: https://malpedia.caad.fkie.fraunhofer.de/

their values are not high, anomaly probabilities of legitimate
communications are usually below these percentages, setting at
an average of 40% with a standard deviation of 0.13, which
results in ≈ 70% of the false positives having an anomaly
probability lower than malicious samples.

Regarding accuracy, among all samples, only two packet
captures of IcedID family have not been successfully de-
tected by our analytics. After an investigation, we found
out that the JA3 generated by malware samples (i.e.,
a0e9f5d64349fb13191bc781f81f42e1) collides with several
hashes produced by legitimate and common services, like
Google APIs and Microsoft Office. This is a known downside
of JA3 hashes [38] which may collide with hashes belonging to
legitimate applications and prevents the detection of malicious
samples. Nevertheless, we are still able to identify malicious
encrypted communications performed by malware developed
by some of the most famous threat actors. Concerning the false
positive rate, it is important to note that the obtained value
allows SOC analysts to proceed with deeper investigations
avoiding unprocessable amounts of alert notifications.

VI. DISCUSSION

As mentioned in Section I, the proposed analytics is embed-
ded in a network security monitoring platform able to support
SOC analysts in investigating cyber threats, as presented fur-
ther in this section. As an example, we analyze packet captures
generated by a malware sample of the family Astaroth, a trojan
and an information stealer widely known to attack companies
in Europe and Latin America since late 2017 [39]. In July
2021, samples – like the one considered in this section –
have been distributed in a Malspam campaign through mails
containing an infected link. By accessing this link, the user
downloads a compressed Powershell script that, if executed,
performs its malicious activity in different infection stages:
first, it creates a support file in the public “Videos” folder in
which specifies a command-and-control center (C&C) domain;
then, the script establishes an HTTP connection with this
latter to download an XML file containing Javascript source
code, which is later run to download 3 malicious DLLs and
a compiler for guaranteeing persistance. Once the malicious
DLLs are loaded, they extract sensitive information (e.g., mail,
e-commerce and banking accounts) from the victim machine
that, afterwards, are exfiltrated to either predetermined or
algorithmically generated malicious domains.

aramis® has been able to successfully detect as malicious
the downloads of the 3 DLLs and the compiler through
an ACA that analyzes HTTP traffic. In parallel, DNS al-
gorithmically generated requests have been detected by two
other analytics, responsible for monitoring DNS traffic [40],
[41]. Finally, the encrypted communications with a C&C
have been correctly identified by the analytics presented in
this paper. Interestingly, aramis® did not detect exfiltrations
through HTTP with any ACA but, thanks to the platform
monitoring capabilies, SOC analysts have been able to identify
HTTP requests exfiltrating data, as reported in Figure 5. Our
SOC analysts speculate that third level domains, depicted in



Fig. 5. HTTP POST requests performed by the Astaroth malware family
sample to exfiltrate data from an infected machine.

the figure, are used by the C&C for categorizing exfiltrated
information from infected machines.

VII. CONCLUSION

In this paper, we proposed a detection method for passively
discovering anomalies in the encrypted traffic of a monitored
network. Relying on a combination of machine learning and
statistical methods, the proposed solution identifies anomalous
and rare SSL/TLS connections that exchange certificates de-
viating from the ones usually used in the monitored network.
The method has been evaluated both on a malicious and a be-
nign dataset: results show high accuracy in detecting malicious
samples developed by worldwide leading threat actors and a
very low false positive rate on legitimate encrypted traffic.
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The Machine Learning Engine analyzes network traffic with two different unsupervised 
classification algorithms.

Each Advanced Cybersec Analytics recognizes a specific attack (e.g., domain generation 
algorithm1, drive by download2, ransomware, IP-flux) or analyzes a specific aspect of the 
network traffic (e.g., network topology, IP geolocation, communication protocol, user agent, 
scheduled operations, constant data transmission).

• Cybercrime is one of the most serious threats to the current society
• The knowledge and implementation of cyber security guidelines is crucial
• Malware and attacks rapidly evolve in time and are very heterogeneous (around 80% of malware found in breach investigations is specific to that organization)

While the advanced cybersec analytics automate cybersec experts investigations as much as possible, the machine learning engine aims to spot any deviations from the usual behaviors in the network 
traffic. The combination of these two different approaches  allowed for the following detection results (found after one month of aramis execution on the network of a medium-size company):

• 1 banking trojan (VawTrak)
• anomalous files exchange (4 • 104 files/hour) from a client to advertising URLs

• 2 network and resource abuses
• 1 attempt of an Apache PHP remote exploit
• 106 unhautorized TOR connections

• Redirection chain from legitimate web server (1,2) to malware distributor (7,8)
• Download of an exploit kit
• Download of a malware (e.g., ransomware, banker trojan) 
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