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ABSTRACT 
 
This pending patent describes a method for detecting systematic communications in a monitored 
network that could be indicators of a malware infection. The method analyzes specific network 
protocols and, for each observed packet, extracts packet metadata to measure the systematicity 
of transmissions between a source and a destination machine. Systematicity is computed using 
incremental variance to guarantee the best performance. In case a systematic communication is 
detected, a security operator is timely notified about the anomaly. The proposed method is 
implemented in an on-premise passive Security Network Monitoring Platform which collects, 
processes, and elaborates network flows in near-real time to detect sequences of suspicious events 
that probabilistically could lead back to a cyber attack. 
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ABSTRACT 
 
This pending patent describes a method for detecting anomalies in a monitored network regarding 
encrypted communications which use either SSL or TLS protocol. The proposed method analyzes 
SSL/TLS handshakes between network clients and external servers. For each secure connection, it 
extracts communication metadata regarding SSL/TLS handshakes and combines machine learning 
techniques with the usage of parametrized cost functions to, respectively, classify suspicious 
communications and attribute them an anomaly score. If a score is greater than a configurable 
threshold, then a security operator is notified about the occurring of a connection with a suspicious 
external server. The outlined method is implemented in an on-premise passive Security Network 
Monitoring Platform which collects, processes, and elaborates network flows in near-real time to 
detect sequences of suspicious events that probabilistically could lead back to a cyber attack. 
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ABSTRACT 
 
This pending patent describes a Bayesian engine that detects anomalies in unencrypted 
communications of a monitored network. The proposed engine analyzes established connections 
between network clients and servers to detect inconsistences with respect to their usual patterns. 
These inconsistencies are identified through multi-stage ensemble learning techniques which allows 
to assign them an inconsistency score. If a score is greater than a configurable threshold, then a 
security operator is notified about the occurring of a suspicious communication between a client 
and a server. The outlined method is implemented in an on-premise passive Security Network 
Monitoring Platform which collects, processes, and elaborates network flows in near-real time to 
detect sequences of suspicious events that probabilistically could lead back to a cyber attack. 
 
 
 
 
 
 



PAPERS 



© 2022 aramis patents and papers, aizoOn technology consulting. All rights reserved 
 

                                                                                                                                    

 ITASEC  
 

  ITALIAN CONFERENCE ON CYBERSECURITY 
 

   Roma, Italy 
    June 20th – 23th, 2022 

 

What is ITASEC?  
The Italian Conference on Cyber Security is the most relevant conference dedicated to cyber 

security at the national level and it is organized annually by CINI, the Italian National Cyber Security 

Lab. The program is rich with scientific workshops and tutorials, ad hoc sessions dedicated to 

academic paper presentations, vendor spaces and vision speeches provided by sponsor 

companies. The main cyber security related themes include Blockchain, Cryptology, Data Security 

and Privacy, Security Management and Governance, Operational Incident Handling and Digital 

Forensics, AI and Security.  

 

Our contribution        

aizoOn presents a scientific paper titled “Near-real-time Anomaly Detect-ion in 
Encrypted Traffic using Machine Learning Techniques”, a joint work 

between the Aramis team and the aizoOn SOC. 

In the last decade, the adoption of HTTPS for securing Internet 
communications increased by up to 90%. Threat actors adapted to this 

transition to HTTPS by writing more sophisticated malware that encrypt their 
communications with command-and-control centers. On the other hand, 

network security appliances are limited by the impossibility of inspecting 
packet payloads for deeper investigations. In this paper, we propose a 

cybersecurity analytics which monitors encrypted network flows and extracts 
features to detect possible occurring attacks and anomalies, by combining 

machine learning with a statistical approach. The analytics is embedded in a 
network security monitoring platform, named aramis, which provides 

cybersecurity analysts with a comprehensive overview of the monitored 
network and its traffic to support them in the identification of potentially 

malicious activities taking place. The detection capabilities of the proposed 
analytics have been tested both on a benign and a malicious dataset. This 

latter has been assembled by our security analysts and includes packet 
captures of samples and tools, respectively, developed and used by 

worldwide leading threat actors. Results show 96.6% accuracy on the malicious 
dataset, with a false positive rate approximatively equal to 0.001% when the 

analytics monitors legitimate encrypted network traffic. 
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Abstract—In the last decade, the adoption of HTTPS for
securing Internet communications increased by up to 90%.
Threat actors adapted to this transition to HTTPS by writing
more sophisticated malware that encrypt their communications
with command-and-control centers. On the other hand, network
security appliances are limited by the impossibility of inspecting
packet payloads for deeper investigations. In this paper, we
propose a cybersecurity analytics which monitors encrypted
network flows and extracts features to detect possible occurring
attacks and anomalies, by combining machine learning with a
statistical approach. The analytics is embedded in a network
security monitoring platform, named aramis®, which provides
cybersecurity analysts with a comprehensive overview of the
monitored network and its traffic to support them in the
identification of potentially malicious activities taking place. The
detection capabilities of the proposed analytics have been tested
both on a benign and a malicious dataset. This latter has
been assembled by our security analysts and includes packet
captures of samples and tools, respectively, developed and used by
worldwide leading threat actors. Results show 96.6% accuracy on
the malicious dataset, with a false positive rate approximatively
equal to 0.001% when the analytics monitors legitimate encrypted
network traffic.

Index Terms—encrypted malware communications, passive
network analysis, anomaly detection, machine learning, SSL, JA3

I. INTRODUCTION

Nowadays the vast majority of Internet traffic is encrypted
thanks to a cross-industry effort involving companies both
from private and public sector. This effort started in the ’90s
but, only in recent years, the percentage of HTTPS encrypted
network traffic has experienced a significant increase [1], up
to achieving a percentage ranging between 80% and 90% [1]–
[5]. Clearly, encrypted communication adoption varies from
country to country and may increase quickly in some regions
with respect to others [5].

The implications are twofold: on the one hand, threat actors
adapted to the transition from HTTP to HTTPS, at a higher
economic cost, performing more sophisticated and concealed
attacks; on the other hand, network security appliances are
limited by the impossibility of inspecting packet payloads for
deeper investigations. The combination of these two factors, in
2020, enabled threat actors to perform malware campaigns re-
lying on HTTPS for delivering malware, contacting command-

and-control activity, and exfiltrating data [6]. In particular,
just in 2020, 67% of malware has been delivered via en-
crypted HTTPS connections [7]. In addition, data exfiltration
and sensitive information stealing have always represented a
challenging threat for companies [8]–[10], primarily from a
financial point of view [6]. With the mainstream adoption
of secure communications (also used by attackers), specific
countermeasures need to be taken into account.

Both academia and industry have proposed different so-
lutions to cope with encrypted traffic, as discussed more in
detail in Section II of this paper. However, a key point that
differentiates the various approaches is their level of intrusive-
ness: some approaches work directly with encrypted traffic,
while others decrypt and re-encrypt data to be inspected.
The first ones do not decipher encrypted communications,
but consider exchanged data and metadata. For this reason,
these approaches are not able to detect compliance and policy
violations or possible security breaches by examining traffic
payloads. Conversely, there exist approaches implemented in
security products, like [11], which decrypt secure communi-
cations and allow to analyze payloads. However, decryption
and encryption processes insert a significant computational
overhead that negatively impacts the performance of these
security products [4]. As discussed later in the paper, the
protocols on which HTTPS relies on provide many negotiable
cipher suites that are not necessarily supported by a specific
security product [4]: according to [6], 60% of organizations is
not prepared to decrypt HTTPS traffic efficiently.

In this context, we propose an advanced cybersecurity
analytics (ACA) which analyzes HTTPS exchanged protocol
messages and extract data and metadata to detect possible
occurring attacks and anomalies. More in detail, the ACA ex-
tracts metadata contained in the fields of X.509 certificates and
SSL/TLS metadata and has been designed to detect anomalies
taking place during a SSL/TLS handshake between a client and
an external server. The analytics combines an unsupervised
machine learning technique with a statistical approach: after
characterizing the SSL/TLS flow with selected features, a
machine learning module isolates anomalous connections and
an anomaly score is calculated in order to alert security
analysts about potential malicious communications.



The proposed algorithm is embedded in aramis® (Aizoon
Research for Advanced Malware Identification System), a
commercial network security monitoring platform able to
collect, process, and elaborate network flows in near-real time
in order to detect and investigate potential malicious or anoma-
lous activities. Network data are processed to detect potentially
malicious activities and, in case of successful detection, two
different kinds of notifications can be issued to SOC analysts:
the first one involves the observation in the network traffic
of one, or more, indicators of compromise, while the second
type of alerts comes from aramis®’ ACAs. Each ACA is a
combination of different statistical approaches and unsuper-
vised machine learning algorithms. Starting from these alerts,
analysts can rely on the platform’s dashboards, that offer drill-
down capabilities, to further investigate alert notifications by:
correlating alerts produced by other analytics (e.g., detection
of malicious payload downloads from compromised sites), or
analyzing similar behaviors throughout the monitored network
(e.g., machines sharing the same user agent or contacting the
same command-and-control center).

The rest of the paper is organized as follows: Section II
discusses related work, while Section III introduces basic
notions that will be later used to detail the proposed approach
(Section IV). The experimental evaluation is reported in Sec-
tion V and Section VI presents a real-world case study. Finally,
Section VII concludes the paper.

II. RELATED WORK

The use of encryption poses significant challenges to net-
work threat detection due to the inapplicability of traditional
signature-matching techniques and the increasing number of
malware authors taking advantage of it, as outlined in Sec-
tion I.

The security community has therefore researched in two
main directions: decryption of traffic flows [11], [12] and
use of network-flow-based metadata [13]. Since decrypting
network traffic and applying traditional signature based ap-
proaches to detect cyber threats is not always possible, not only
due to privacy and legal concerns, but also for the introduced
considerable overhead (as discussed in Section I), the com-
bination of passive data extraction from a monitored network
and subsequent application of machine learning techniques on
SSL/TLS metadata has more and more become an appealing
solution [6], [14]–[16]. As an example, [17] performed an
analysis over millions of SSL/TLS encrypted flows and a study
on 18 malware families by extracting meaningful features from
data. With the widespread use of machine learning techniques,
research focus has hence moved on the feature engineering
tasks [18], [19]. Two different groups of features may be
currently found in literature: statistical and sequential features.
Statistical features contain but are not limited to flow-level
metadata, packet length distributions, time distributions, byte
distributions and SSL/TLS header information [17]. An exam-
ple of deep learning framework combining statistical features
can be found in [19]. Sequential features are obtained from the
raw flow sequences by learning the generation probabilities of

flows. By representing the traffic flow sequence via Markov
transformation matrix, [20] clustered certificate lengths and
first packet lengths to improve the classification performance
under a second-order Markov model.

The approach we present and evaluate in the next sections
passively extracts both statistical and sequential features from
network flows to detect anomalies in a monitored network.
Differently from [20], we leverage machine learning to rec-
ognize SSL/TLS handshakes deviating from the ones usually
established in the network. Similar to [6] the proposed ana-
lytics establishes a baseline of usually secure connections, by
using a different set of features.

III. BACKGROUND

A. SSL and TLS protocols

SSL and TLS protocols allow two machines to authenti-
cate and establish a session key, created to cryptographically
protect the remainder of the session [21]. Authentication is
performed by means of certificates, which are signed messages
reporting the identity of either an individual, a host, or an
organization. In the World Wide Web, certificates are typically
signed by trusted nodes, called Certification Authorities (CA).
The standard used for SSL/TLS protocols to define public key
certificates’ format is X.509, version 3 [22]. The advanced
cybersecurity analytics we propose in this paper analyzes a
subset of all the available fields in X.509 certificates, that are
briefly described in the following. The signature field contains
both the algorithm identifier and hash function used by the CA
for signing the certificate (e.g., sha-1WithRSAEncryption). On
the other hand, the validity field stores the time interval during
which the CA ensures that it will keep information about
the certified entity, specified in the subject name field. Each
X.509 certificate contains, respectively, information about the
subject public key and the issuer: the first specifies the public
key itself and the algorithm applied for generating it (e.g.,
rsaEncryption), while the second reports the name of the CA
that issued the public-key certificate.

B. One-class SVM

The original formulation of Support Vector Machines
(SVMs) is related to the resolution of supervised tasks, but
the one-class SVM has been shown to represent a suitable
choice in the context of anomaly detection [23]. It is defined as
a boundary-based anomaly detection method, which modifies
the original SVM approach by extending it in order to deal
with unlabeled data. Like traditional SVMs, one-class SVMs
can also benefit of the so called kernel trick when extended
to non-linearly transformed spaces, by defining an appropriate
scalar product in the feature space.

C. Jenks’ natural breaks optimization

This optimization method, applied to power-law distribu-
tions, divides input instances in classes by minimizing within-
class variance, while maximizing between-class variance [24].
The goodness-of-variance-fit (gvf) value expresses the diver-
gence between predicted classes and observed values. Jenks’



Fig. 1. SSL/TLS analytics overview.

natural breaks optimization consists in iteratively computing
the gvf by moving one data value from the class with the
largest deviations from the mean to the class with the lowest
ones, until the sum of the within-class deviations reaches a
minimum [25].

IV. SSL/TLS ANALYTICS

The proposed approach aims at detecting possible anomalies
occurring during a SSL/TLS handshake between a client,
located inside the network monitored by the software plat-
form outlined in Section I, and an external server. We recall
that SSL/TLS protocols enable two machines to securely
communicate over an unprotected network (e.g, Internet), as
mentioned in Section III-A.

Detection of possible anomalies may be performed by
simply analyzing the information exchanged during SSL/TLS
handshakes, e.g., by examining the issuer and subject fields of
a certificate. Another element that requires particular attention
is represented by self-signed X.509 certificates: in this case,
the issuer and the subject fields share the same CA value, and
the private key employed by the CA to sign the certificate
corresponds to the public key certified within the certificate
itself [22]. The challenge is here represented by the fact that
self-signed certificates can be included in certification paths
and can be legitimately used by CAs to advertise information
about their operations. However, it is an ever-growing common
practice for malware to communicate with their command-and-
control servers using a self-signed certificate.

Therefore, the SSL/TLS detection analytics examines infor-
mation contained in X.509, SSL, and TLS exchanged protocol
messages. As mentioned in Section I, aramis® is designed to
collect data and metadata related to all the packets transmitted
in the monitored network. After data collection, aggregation,
and filtering, the SSL/TLS analytics extracts, for each SS-
L/TLS flow, features able to capture possible anomalies in
the communication. Selected features are fed to a machine
learning module, which detects suspicious connections, whose

{
" v e r s i o n " : " TLSv12 " ,
" se rve r_name " : " teams . m i c r o s o f t . com" ,
" c u r v e " : " s e c p 3 8 4 r 1 " ,
" s u b j e c t " : "CN= teams . m i c r o s o f t . com" ,
" i s s u e r " : "CN= M i c r o s o f t RSA TLS CA 01 ,

O= M i c r o s o f t C o r p o r a t i o n , C=US" ,
" s e r v e r _ c e r t _ c h a i n " : [

{
"md5" : "28211 f1f8a50966b518ec39d3546d57d " ,
" sha1 " : "4 a263f1f39dd526901987ecdb09e2d1297e2bc51 " ,
" x509 " : {

" v e r s i o n " : 3 ,
" k e y _ t y p e " : " r s a " ,
" k e y _ a l g " : " r s a E n c r y p t i o n " ,
" k e y _ l e n g t h " : 2048 ,
" s i g _ a l g " : " sha256WithRSAEncrypt ion " ,
" n o t _ v a l i d _ b e f o r e " : 1606847889.0 ,
" n o t _ v a l i d _ a f t e r " : 1638383889.0 ,
" s u b j e c t " : "CN= teams . m i c r o s o f t . com" ,
" i s s u e r " : "CN= M i c r o s o f t RSA TLS CA 01 ,

O= M i c r o s o f t C o r p o r a t i o n , C=US" ,
}

}
] ,
" j a 3 " : "7 f805430de1e7d98b1de033adb58cf46 " ,
" j a 3 s " : "0 f14538e1c9070becdad7739c67d6363 " ,
" c i p h e r " : "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" ,
" machineDes t " : "TEAMS. MICROSOFT .COM"

}

Fig. 2. Sample of a communication log including both TLS and X.509
information. For space constraints, in the server certification chain we kept
only the end-user certificate.

anomaly score is eventually computed and possible alerts are
signaled to security analysts.

A. General approach and feature extraction

Figure 1 reports the general structure of the proposed
detection method: network traffic involving secure connec-
tions is monitored, collected and stored in a database. This
knowledge base is periodically accessed in order to retrieve
updated information about established encrypted outbound
connections, i.e., data and metadata about X.509, SSL, and
TLS exchanged protocol messages.

Data and metadata related to the same communication
between a client and a server are then aggregated: indeed, a
communication is eventually described by complementary in-
formation given by both SSL/TLS and X.509. Figure 2 shows
an example of an aggregated log comprising both TLS and
X.509 information, related to a secure connection established
with the business communication platform Microsoft Teams1.
For privacy reasons, we omitted from the log all the sensitive
information as, for example, the IP addresses involved in the
communication. It is important to note that each log contains
a subset of the information briefly discussed in Section III-A.

The filtering phase allows to remove from input data in-
formation about connections to known and popular domains,
servers, CDNs, and X.509 certificates trusted by the com-
pany where aramis® is deployed. It is worth noting that
the platform itself enriches the whitelists database by taking
trace of popular secure connections and highly visited servers,

1Microsoft Teams:https://teams.microsoft.com/



TABLE I
LIST OF NUMERIC FEATURES EXTRACTED FROM SSL/TLS FLOWS

Feature ID Numeric features Fn

n0 JA3 popularity (see IV-B for further details)
n1 Server certificate chain popularity (see IV-B for further details)
n2 Number of self-signed certificates normalized over a value indicating the maximum length of a certificate chain (e.g., 100)
n3 Number of expired certificates normalized over a value indicating the maximum length of a certificate chain (e.g., 100)

n4
Number of certificates reporting an anomalous validity (e.g., a validity less than 3 days) normalized over a value indicating the maximum length of a
certificate chain (e.g., 100)

n5 Number of certificates signed with a weak signing algorithms normalized over a value indicating the maximum length of a certificate chain (e.g., 100)

TABLE II
LIST OF BOOLEAN FEATURES EXTRACTED FROM SSL/TLS FLOWS

Feature ID Boolean features Fb

b0 The server certificate (or a certificate stored in the server certificate chain) is self-signed
b1 The certificate signed by the server (or a certificate stored in the server certificate chain) is expired
b2 The subject contained in the end-user certificate has an invalid top-level domain
b3 The country listed in the end-user certificate is not valid
b4 One of the certificates in the server certificate chain has an anomalous validity (e.g., a validity less than 3 days)
b5 One of the certificates in the server certificate chain relies on a weak signing algorithm
b6 The server name is not a sub-domain of the end-user subject’s certificate

b7, b8, b9 The server name, the subject, and the issuer of the end-user certificate might be randomly generated (see IV-C for further details)

through two different signatures: ‘JA3’ hashes and server
certificate chains. A JA3 hash is defined as a fingerprint of a
SSL/TLS flow generated by a client, built from the following
handshake information: SSL/TLS protocol version, type of
employed cypher, possible extension values [26], enumeration
of the supported elliptic curves, and the point formats such
curves can parse [27]; hexadecimal values representing this
information are concatenated and then hashed trough an MD5
function. On the other hand, server certificate chains allow to
identify communications with specific servers, encoded using
MD5 hashes: each SHA1 hash identifying a specific certificate
in the chain is concatenated with the other chain’s SHA1s,
which identify the other certificates in the chain. Concatenated
SHA1s are then hashed using an MD5 function.

In order to create the feature space to be used by the ma-
chine learning algorithm and analytics’ modules, the SSL/TLS
analytics extracts, for each SSL/TLS flow, both numeric and
boolean features which are listed in Table I and II. These
chosen features are able to capture signals indicating possible
anomalies in the certification chain sent by server to the client.

B. Popularity calculation

Regarding the JA3 and server certificate chain popularity
(features n0 and n1 in Table I), term frequency metrics
calculation is applied [28]. In particular, both the JA3 hashes
and the received server certificate chains are generalized as
terms t0, . . . , ti, respectively generated and exchanged during
SSL/TLS handshakes in a predefined time interval ∆t. As
an example, one can compute the popularity of a specific
JA3 hash h, using one of the standard term-frequency tf
definitions, commonly applied in information retrieval:

tf(h) =
ch∑

h′∈H ch′
(1)

where ch is the number of occurrences of h divided by the
total number of hashes |H| observed in ∆t. Analogously, it

is possible to compute the popularity of a server certification
chain scc through tf(scc). Popularity values are normalized
and used to filter out either popular secure connections or
highly visited servers.

C. Randomness calculation

Randomness of the server name, the subject, and the issuer
of the end-user certificate (used to extract features b7,b8 and
b9 in Table II) is intended to measure how much their mono-
grams and bigrams characters distributions are “close” to the
ones associated to randomly generated strings, according, for
example, to the English language characters distribution (note
that also other languages can be configured). Such measure
is obtained by employing the same approach of an open-
source random string detector based on a 2-character Markov
chain [29]: this system is trained on pairs of subsequent
characters extracted from few megabytes of English text to let
the Markov chain learn which is the probability distribution
of the appearance of a character following a given one. Thus,
the trained Markov chain fed with an input string produces an
output probability p indicating how much the string follows
the language distribution: the resulting probability grows as
the similarity to English words gets higher.

D. Anomaly detection

Numeric features and a subset of boolean features – namely
FSVM := {Fn ∪ b7, b8, b9} – are given in input to the one-
class classifier described in Section III-B. In particular, we rely
on a R library implementation of the one-class SVM that uses
a radial basis function kernel. SVM hyperparameters ν and γ
have been tuned to minimize generalization error, as discussed
in [30], and respectively set to 0.5 and 0.1. Moreover, we
remove from FSVM all those features whose variance is equal
to 0, because they do not add any information to the built
model. The model creation phase [31] is performed on the
collected historical data, which compose the training set used
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Fig. 3. Distribution of JA3 hash occurrences in the monitored network,
observed during a period of 20 days. For privacy reasons, on the x axis,
identifiers associated to unique JA3 hashes are reported instead of actual
hashes.

to train the model. Models are periodically updated using 6
hours of secure traffic data. Outputs therefore represent secure
connections which deviate – in one or more features – from
the ones normally observed in the monitored network. Built
machine learning models can be also helpful in detecting zero-
day attacks, because malicious traffic samples are not required
for the learning phase.

It is worth noting that connections identified as anomalous
by the classifier are not necessarily malicious: for example,
legit self-signed company certificates are correctly detected
by the SVM module as anomalous, but they do not represent
a cyber threat. To reduce false positives and be sure of
analyzing only suspicious communications that, hence, are
not widespread across the monitored network, the analytics
filters out popular JA3 hashes. Since JA3 frequencies follow
the power law distribution, as shown in Figure 3, we apply the
Jenks’ natural breaks optimization (described in Section III-C)
to extract the least popular JA3s and take into account only
rare JA3 hashes. By employing a variant of an R open-
source algorithm for computing Jenks’ natural breaks [32],
the analytics first calculates which is the optimum number
of breaks that allows to achieve the maximum goodness-of-
variance-fit. Then, by running again the optimization method
and providing the optimum number of breaks to divide input
hashes in classes, the analytics selects all the JA3 hashes
included in the last class (i.e., the least popular). At this point,
all the hashes having a term frequency (see Equation 1) higher
than the one of the least popular JA3 hashes are filtered out.
After filtering, the remaining term frequencies are normalized
by dividing them by the maximum observed frequency.

As shown in Figure 1, flows detected as suspicious by the
SVM and whose JA3 hashes are not popular are fed to a
second analysis module that computes an anomaly probability
AF . The module combines configurable weights and two
different parametric generalized logistic functions, which both
allow to tune AF according to the needs of SOC analysts.
In other words, a weight wi is associated to each one of
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Fig. 4. Example of two generalized logistic functions that convert popularity
values into anomaly probabilities. The two functions have been respectively
obtained using the following parameters: K = 0.95, S = 0, C = Q = 1.0,
x0 = 0.125, B = 95 , ν = 5 and K = 1.0, S = 0, C = Q = 1.0,
x0 = 0.5, B = 15 , ν = 2.5.

the boolean features Fb listed in Table II and an anomaly
probability AF is computed using a weighted arithmetic mean:
AF =

∑|Fb|
i=1 wi · b′i, where b′i represents the result of the

conversion of a boolean value into either a 0 or 1, depending
on its truth value (i.e., 0 if false, 1 otherwise). Each weight
wi is adjusted according to the nature of the traffic analyzed
by aramis®2. As an example, a SOC analyst may set a
higher weight to the feature representing whether the end-
user certificate is self-signed: if the monitored network does
not employ self-signed certificates, then the security analyst
may assign a higher weight to this feature in order to spot
possible connections relying on a self-signed certificate.

On the other hand, JA3 and server certificate chain pop-
ularities are converted to anomaly probabilities using two
generalized logistic functions of the form

K − K − S
(C +Qe−B(x−x0))1/ν

This type of functions was initially proposed by Richards in
1959 to model plants growth rate [33], but it turned out to be
able to generate more flexible S-shaped curves. In the above
equation x are rank values, K is the upper asymptote, S is
the lower asymptote value, C, Q, and x0 are proper constant
values, B is the growth rate, and ν affects the direction along
which maximum growth occurs. Figure 4 shows an example
of two logistic functions, deployed to production, in which
the first one has been specifically designed to filter out known
and/or highly visited external servers (i.e, whose certification
chain popularity is greater or equal to 15%) by assigning them
an anomaly probability equal to 0.

Anomaly probabilities resulting from the application of
logistic functions are first averaged between them, and then
with AF to obtain the final anomaly probability A. Finally,

2Weights wi reflect the importance given by SOC analysts to the corre-
sponding features b′i; for the experimental evaluation, assigned weight values
are w0 = 0.2, w1 = w4 = w5 = w6 = 0.13, w2 = w3 = 0.005,
w7 = w8 = w9 = 0.09.



TABLE III
MALWARE PACKET CAPTURES SUMMARY

Type Family Threat actor Domain Year Stage Am

Banking trojan, info
stealer Emotet Mummy Spider,

Mealy Bug

womenempowermentpakistan.com, fynart.com, www.
laminatedtube.com, ygpryd.com, thammynhp.com,
shop.homenhealthy.com, rocketviral.com, www.campus
camarafp.com, snjwellers.com, pesquisacred.com,
theaffiliateincome.com, stars-castle.ir, travianbot.net,
lamajesteindustries.com, nanettecook.org

2020-
2021

Dropper loading 0.48

Info stealer, bank-
ing malware Ursnif Golden Cabin - 2021 Callback 0.63

Info stealer, bank-
ing malware IcedID Gold Cabin marslayot.top, garrozalibbo.click 2021 Callback 0.70

Info stealer, bank-
ing malware Bazarloader UNC1878 - 2021 Callback 0.60

Banking trojan Trickbot
Graceful Spider,
UNC1878,
Wizard Spider

api.ip.sb, barionexis.top, ident.me, api.ipify.org, liverpo
oldabestteamoftheworld.com 2021

Information gather-
ing, dropper load-
ing, and data exfil-
tration

0.62

Info stealer Lokibot
Sweed, The Gorgon
Group

makiyazhdoma.ru, itsssl.com, hiokurl .com, hyp.ae,
pxlme.me bakercost.gq 2021 Dropper Loading 0.49

Info stealer AgentTesla Sweed

api.ip.sb, iplogger.[ru|org], ipinfo.io, 2no.co, connec
tini.net, [a|b].xyzgame.cc, fb.xiaomishop.me,
spark.lightburst.xyz, ezps.co.uk, shadow-
vpn.net, iplis.ru, p6701.softemstore.xyz,
2no.co, www.profitabletrustednet9work.com,
bucket.swiftlaunchx.com

2021
Information gather-
ing and dropper
loading

0.70

Info stealer AZORult The Gorgon Group tradecontract.es, telete.in, iplogger.org, music-s.xyz 2021 Dropper loading 0.41
Remote Access
Trojan Jssloader FIN7 injuryless.com 2021 Dropper loading 0.41

Remote Access
Trojan AsyncRAT - - 2021 Dropper loading 0.63

Dropper Chopstick APT28 cdnverify.net, mvband.net 2020 Dropper loading 0.81

Dropper Gamaredon
Downloader Gamaredon hastebin.com religonclothes.com 2020

Dropper loading
and callback 0.50

Coin miner Coinminer - iplogger.org 2020
Information gather-
ing 0.51

Ransomware GandCrab - www.billerimpex.com 2018 Callback 0.60

TABLE IV
TOOL PACKET CAPTURES SUMMARY

Tool Threat actor License Capabilities Am

Empire
CopyKittens, FIN10, APT19, APT33, Turla, Wirte, Silence,
Frankenstein, Wizard Spider, Muddy Water, APT41, Indrik
Spider

Open-source Remote administration and post-exploitation framework 0.69

Cobalt Strike
APT 29, APT32, APT41, Anunak, Cobalt, Codoso, Copy-
Kittens, DarkHydrus, FIN6, Leviathan, Mustang Panda, Shell
Crew, Stone Panda, UNC1878, UNC2452, Winnti Umbrella

Commercial Penetration testing product that allows an attacker to deploy an
agent on the victim machine 0.51

Meterpreter3 - Open-source
Attack payload that provides an interactive shell from which an
attacker can explore the target machine and execute code 0.60

A is further increased by using a configurable weight wN
(wN = 0.25 in the experimental evaluation reported in
Section V) if any of the features observed in the test set
has not been seen before: as mentioned in Section IV-D,
we filter out features in FSVM whose variance is 0 and, for
this reason, it may happen that some features observed in
the test do not appear in the trained model. As an exam-
ple, aramis® may not have seen during the SVM training
time an expired certificate; thus, if the analytics observes a
secure communication involving an expired certificate, then
such anomaly is addressed by increasing the overall anomaly
probability A by using wN . If the anomaly probability A is
above a configurable threshold Ath, then the security analysts
are notified about suspicious secure connections established
with external servers located outside the monitored network.
Ath can be dynamically configured to provide in output only
anomaly probabilities approximately greater than 16%, 30%,

44%, and 62%, according to SOC’s analysis requirements.

V. EXPERIMENTAL EVALUATION

For the experimental evaluation of the proposed approach,
we collected both a malicious and a benign dataset. The first
one is constituted by packet captures generated from samples
and tools, respectively, developed and used by worldwide
leading threat actors [7], [34]–[36], which have been injected
in aramis® in order to be processed and analyzed as ordi-
nary traffic. Packet captures of samples and tools have been
selected by our security analysts from three online malware
analysis services, namely ANY.RUN4, Hybrid Analysis5 and

3Even though Meterpreter is not a tool used by threat actors, it allows to
craft fake self-signed certificates

4ANY.RUN: https://app.any.run/
5Hybrid Analysis: https://www.hybrid-analysis.com/



TABLE V
LEGITIMATE NETWORK TRAFFIC DATASET SUMMARY

Statistics Count One-hour mean
Total number of SSL/TLS logs 2M 3,478
Total number of machines 578 58
Total number of unique server names 19,421 344
Total number of unique JA3 233 39
Total number of unique JA3s 487 80
Total number of unique cert. chain SHA1s 7,561 257

Malware Traffic Analysis6. Chosen samples contain, among le-
gitimate network traffic, SSL/TLS malicious communications.
Tables III and IV report a summary of the malicious assembled
dataset: for malware, we indicate type and family while, for
tools, we report their licenses and corresponding tool capabil-
ities. In both cases, we detail threat actors according to the
definitions given by MITRE7 and Malpedia8. Analogously to
FireEye [37], we listed also malware stages to better character-
ize and describe collected samples: dropper loading, callback
and data exfiltration. In the majority of analyzed samples,
SSL/TLS connections have been established for downloading
droppers and contacting command-and-control centers. In ad-
dition to the stages described by FireEye, we introduce the
information gathering stage, that represents a phase in which
malware leverage external services to investigate and reveal
external IPs of compromised machines. On the other hand,
the benign communication dataset gathers legitimate SSL/TLS
communications observed in a real corporate network during
a period of 24 days. Table V summarizes general statistics
about the network traffic taken into account. Both datasets have
been injected in a controlled network environment provided
with aramis®, the network security monitoring platform briefly
discussed in Section I, to respectively measure the accuracy of
the proposed approach and to evaluate the false positive rate
on legitimate secure connections. Performed evaluations have
been split because the malicious dataset is divided in samples,
while the benign one in connections. Hence, depending on the
input dataset, quantities of true and false positives and true
and false negatives are, respectively, referred to either mal-
ware samples or benign connections. As an example, for the
malicious dataset, true positives are defined as the number of
correctly detected malware/tool samples, while false negatives
as the number of malware/tool samples incorrectly labeled as
benign. In this case, false positives and true negatives are equal
to 0 because no benign sample is included in the malicious
dataset. Analogous considerations apply to the benign dataset.

The accuracy measured on the malicious dataset, which
includes 59 samples collected by our security analysts, is
equal to 96.6%. On the other hand, the false positive rate
calculated on the benign network traffic is approximately
equal to 0.001%. Tables III and IV report in column Am
the mean of maximum anomaly probabilities computed when
analyzing malicious samples. It is worth noting that, even if

6Malware Traffic Analysis: https://www.malware-traffic-analysis.net/
7MITRE: https://attack.mitre.org/
8Malpedia: https://malpedia.caad.fkie.fraunhofer.de/

their values are not high, anomaly probabilities of legitimate
communications are usually below these percentages, setting at
an average of 40% with a standard deviation of 0.13, which
results in ≈ 70% of the false positives having an anomaly
probability lower than malicious samples.

Regarding accuracy, among all samples, only two packet
captures of IcedID family have not been successfully de-
tected by our analytics. After an investigation, we found
out that the JA3 generated by malware samples (i.e.,
a0e9f5d64349fb13191bc781f81f42e1) collides with several
hashes produced by legitimate and common services, like
Google APIs and Microsoft Office. This is a known downside
of JA3 hashes [38] which may collide with hashes belonging to
legitimate applications and prevents the detection of malicious
samples. Nevertheless, we are still able to identify malicious
encrypted communications performed by malware developed
by some of the most famous threat actors. Concerning the false
positive rate, it is important to note that the obtained value
allows SOC analysts to proceed with deeper investigations
avoiding unprocessable amounts of alert notifications.

VI. DISCUSSION

As mentioned in Section I, the proposed analytics is embed-
ded in a network security monitoring platform able to support
SOC analysts in investigating cyber threats, as presented fur-
ther in this section. As an example, we analyze packet captures
generated by a malware sample of the family Astaroth, a trojan
and an information stealer widely known to attack companies
in Europe and Latin America since late 2017 [39]. In July
2021, samples – like the one considered in this section –
have been distributed in a Malspam campaign through mails
containing an infected link. By accessing this link, the user
downloads a compressed Powershell script that, if executed,
performs its malicious activity in different infection stages:
first, it creates a support file in the public “Videos” folder in
which specifies a command-and-control center (C&C) domain;
then, the script establishes an HTTP connection with this
latter to download an XML file containing Javascript source
code, which is later run to download 3 malicious DLLs and
a compiler for guaranteeing persistance. Once the malicious
DLLs are loaded, they extract sensitive information (e.g., mail,
e-commerce and banking accounts) from the victim machine
that, afterwards, are exfiltrated to either predetermined or
algorithmically generated malicious domains.

aramis® has been able to successfully detect as malicious
the downloads of the 3 DLLs and the compiler through
an ACA that analyzes HTTP traffic. In parallel, DNS al-
gorithmically generated requests have been detected by two
other analytics, responsible for monitoring DNS traffic [40],
[41]. Finally, the encrypted communications with a C&C
have been correctly identified by the analytics presented in
this paper. Interestingly, aramis® did not detect exfiltrations
through HTTP with any ACA but, thanks to the platform
monitoring capabilies, SOC analysts have been able to identify
HTTP requests exfiltrating data, as reported in Figure 5. Our
SOC analysts speculate that third level domains, depicted in



Fig. 5. HTTP POST requests performed by the Astaroth malware family
sample to exfiltrate data from an infected machine.

the figure, are used by the C&C for categorizing exfiltrated
information from infected machines.

VII. CONCLUSION

In this paper, we proposed a detection method for passively
discovering anomalies in the encrypted traffic of a monitored
network. Relying on a combination of machine learning and
statistical methods, the proposed solution identifies anomalous
and rare SSL/TLS connections that exchange certificates de-
viating from the ones usually used in the monitored network.
The method has been evaluated both on a malicious and a be-
nign dataset: results show high accuracy in detecting malicious
samples developed by worldwide leading threat actors and a
very low false positive rate on legitimate encrypted traffic.
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Abstract

In the last decade, the use of fast flux technique has become established as a common
practice to organise botnets in Fast Flux Service Networks (FFSNs), which are platforms
able to sustain illegal online services with very high availability. In this paper, we report
on an effective fast flux detection algorithm based on the passive analysis of the Domain
Name System (DNS) traffic of a corporate network. The proposed method is based on
the near-real-time identification of different metrics that measure a wide range of fast flux
key features; the metrics are combined via a simple but effective mathematical and data
mining approach. The proposed solution has been evaluated in a one-month experiment,
performed by collecting DNS traffic and injecting pcaps associated with different malware
campaigns, that leverage FFSNs and cover a wide variety of attack scenarios. An in-depth
analysis of a list of fast flux domains and the detection of malware campaigns backed up
by a FFSN infrastructure confirmed the reliability of the metrics used in the proposed
algorithm. All the fast flux domains were detected with a very low false positive rate and
the resulting false positives have very low anomaly indicators; a comparison of performance
indicators with similar works shows a remarkable improvement.

Keywords: automated security analysis, malware detection, network security, passive
traffic analysis, botnet, malware campaign, fast flux.

1 Introduction

During the last few years, the number of cyberattacks with relevant financial impact and media
coverage has been constantly growing. As a result, many companies and organizations have
been reinforcing investment to protect their networks, with a resultant increase in the research
on this topic [33].

Over the last two decades, botnets have represented one of the most prominent sources of
threats on the internet: they are networks of compromised computers (popularly referred to
as zombies or bots), which are controlled by a remote attacker (bot herder). Botnets provide
the bot herder with massive resources (bandwidth, storage, processing power), allowing for the
implementation of a wide range of malicious and illegal activities, like spam, distributed denial-
of-service attacks, spreading of malware (such as ransomware, exploit kits, banking trojans,
etc.) [3, 8, 9, 10, 15].

A common practice for bot herders is to organise their bots in Fast Flux Service Networks
(FFSNs): some bots, chosen from a pool of controlled machines, are used as front-end proxies
that relay data between a (possibly unaware) user and a protected hidden server. The technique
behind these structures is the fast flux, i.e., the rapid and repeated changing of an internet
host and/or name server resource record in a Domain Name System (DNS) zone, resulting

∗An extended version of this paper has been published in Information Security Conference Proceedings in
2018. The current version has been reviewed by taking into account new references, using a new IP-dispersion
metrics, and updating experimental evaluations with more recent samples.
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in rapid changes of the IP addresses to which the domain resolves. FFSNs make the tracing
and the recovery of all the infected components extremely difficult, thus allowing for a very
high availability for illegal online services related to phishing, dumps stores, and distribution
of ransomware, info stealers, and click fraud [12, 19, 23, 32, 34, 42].

FFSNs have been known to cybersecurity experts for more than one decade [15, 32] and, in
the last years, it obtained a spotlight [4, 8, 10, 17, 31, 35]. Indeed, many security researchers
have studied large botnets (e.g., Dark Cloud, also known as Zbot network, and SandiFlux),
which make massive usage of fast flux, in order to detect their malicious activities [28, 12, 18].
Even if, in the very recent past, the academic interest about finding new methodologies for
detecting FFSNs has died away, threat actors still extensively use this technique to make their
infrastructure highly available [13, 27, 29].

The standard approach to FFSNs detection is via the so-called active DNS analysis, i.e., by
actively querying some domains and by collecting and analysing the answers: this strategy has
been widely explored and allows for extensive analyses of botnets [4, 15, 16, 17, 18, 19, 21, 23, 24].
Instead, the algorithm described in the present work relies on passive analysis of the DNS traffic
of a single network: it detects the fast flux domains without interaction with the network traffic,
thus making the algorithm completely transparent inside and outside the monitored network;
in particular, it cannot be uncovered by the attackers, who often control the authoritative
name servers responsible for responding to DNS queries about their fast flux domains [25].
The proposed detection approach has been evaluated on 30 days of DNS traffic, as described
in Sect. 5. The performance is much higher compared to a state-of-the-art analogous method
[34]. Moreover, the analysis was performed near-real-time: the average execution time of the
algorithm was 25 seconds, while the average time between two subsequent runs of the algorithm
was 3 minutes (see Sect. 5 for more details).

As an additional test of the proposed approach, we carried out a detailed analysis on IPs —
collected via active DNS analysis — associated with a list of fast flux domains gathered from
[6, 39, 30, 40] and reported, for space constraints, only the obtained results. This investigation
along with the successful detection of recent malware campaigns confirmed the reliability of the
metrics used in the fast flux detection method proposed herein.

The paper is structured as follows. In Sect. 2, we discuss the most relevant features of
FFSNs, with an outline of related works. In Sect. 3, we briefly describe aramis, the monitoring
platform that contains the fast flux detection method which is the focus of this paper and which
is described thoroughly in Sect. 4. Section 5 comprises a detailed discussion of the experimental
results of the test of the proposed algorithm, while Sect. 6 contains further investigations on the
FFSNs underlying some fast flux domains. Finally, we summarize obtained results in Sect. 7.

2 Background and Related Work

One of the first works providing an overview of the fast flux attacks was the Honeynet project
[32]. In order to explain hidden operations executed by botnets, authors gave examples of
both single and double fast flux mechanisms: while the first rapidly changes the A records of
domains, the latter frequently changes both the A records and the NS records of a domain.
Interested readers can find a review and a classification of fast flux attacks in [42, 2].

Content Delivery Network (CDN) and Round-Robin DNS (RRDNS) are legitimate tech-
niques which are used by large websites to distribute the load of incoming requests to several
servers. The response to a DNS query is evaluated by an algorithm which chooses a pool of
IPs from a large list of available servers whose number can be of the order of thousands. As
a result, the behaviour in terms of DNS traffic is very similar to the one of a FFSN, and in-
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deed CDNs and RRDNSs represent the typical false positives in fast flux detection algorithms
[15, 19, 34, 41, 36].

A large number of approaches have been proposed to detect FFSNs and to distinguish them
from legitimate CDNs and RRDNSs. Most of them rely on active DNS analysis, which allows
for the collection of a large number of IPs associated with a domain, thus simplifying the FFSNs
detection, but they require the resolutions of domains that may be associated with malicious
activities [10, 15, 17, 19, 23]. These methods, despite being appropriate for a deep analysis of
FFSNs, have relevant drawbacks in implementations oriented to the monitoring of corporate
networks [25, 34].

Some FFSN detection methods based on passive DNS analysis have been proposed. Some
of them analyse the DNS traffic of a whole Internet Service Provider (ISP), thus taking in
input the DNS traffic generated by many different networks. Perdisci et al. [25], in particular,
performed a large-scale passive analysis of DNS traffic. They extract some relevant features
from the DNS traffic and classified the domains via a C4.5 decision tree classifier. Berger et
al. [8] and Stevanovic et al. [35] proposed two other approaches to analyse the DNS traffic of
an ISP. Both methods are based on a tool called DNSMap and classify the bipartite graphs
formed by the collected fully qualified domain names and the associated IPs. The first method
searches for generic malicious usage of DNS, while the latter focuses on FFSNs. More recently,
Surjanto and Lin have successfully clustered DNS traffic of an ISP, distinguishing with high
accuracy FFSNs from CDNs [36].

Soltanaghaei and Kharrazi [34] and Zang et al. [41] proposed techniques for passive DNS
analysis of a network. While the former requires a history for each domain to be evaluated
and achieved 94.44% detection rate and 0.001% false positive rate in their best experiment, the
latter combines an online and offline approach to detect FFSNs with an accuracy greater than
96%. Our algorithm employs a similar approach, but, with a more careful choice of employed
metrics and achieves better results, while performing a near-real-time analysis (see Sects. 4 and
5 for details).

3 aramis

The proposed fast flux detection technique is included in a commercially available network secu-
rity monitoring platform called aramis (Aizoon Research for Advanced Malware Identification
System) [1, 9]. This software automatically identifies different types of malware and attacks in
near-real-time and its structure can be outlined in four phases:

1. Collection: sensors located in different nodes of the network gather data , preprocess them
in real-time and send the results to a NoSQL database.

2. Enrichment: data are enriched in the NoSQL database using the information obtained
from the aramis Cloud Service, which collects intelligence from various OSINT sources
and from internally managed sources.

3. Analysis: stored data are processed by means of two types of analysis: (i) advanced
cybersecurity analytics which highlight specific patterns of attacks, among which DGAs
[9] and fast flux, and (ii) a machine learning engine which spots deviations from the usual
behaviour of each node of the network.

4. Visualization: results are presented in ad hoc dashboards to show and highlight anomalies.
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The cycle of the four phases restarts after a time ∆t which slightly depends on the traffic
flow analysed and amounts to 182± 36 seconds on the network described in Sect. 5. A time ∆t
of this magnitude is the best trade-off between the near-real-time requirement and the need of
a large amount of data in order to have statistically significant results.

4 Detection Method

The aim of the proposed detection method is the near-real-time identification of malicious
fast flux via the passive monitoring of the DNS traffic of a single network. To this end, we
leverage a simple but effective method that combines a data mining approach with statistics
and it is composed by three steps of analysis: (i) filtering phase in which queries known to
be non-malicious (e.g., popular domains, known CDNs, local domains, etc.) are removed, (ii)
Metrics identification step allows to compute some key indicators over the queries remaining
after filtering, and (iii) anomaly identification phase in which identified metrics are used to
detect malicious fast flux. The parameters of the model have been estimated over a validation
set formed by 30-days of DNS traffic captured from the network described in Table 1, and by
15 pcaps associated with different malware campaigns that leverage FFSNs, collected from the
public repository [7] and [5], spanning from 2015 to 2020.

Table 1: Validation-network description
30-days total one-hour average

N. of machines 261 -

N. of connections 80 M 111 k

N. of resolved A-type DNS queries 12 M 17 k

N. of unique resolved A-type DNS queries 381 k 527

4.1 Filters

The algorithm receives resolved DNS requests of type A (which return 32-bits IPv4 addresses,
in accordance with [14]) collected near-real-time from the monitored network. The first step
consists in the application of the filters: for a detailed description of filters applied to the
retrieved queries, refer to the extended version of this paper [20].

4.2 Metrics Identification

The DNS requests that survive the filters 4.1 are integrated with the history of the previous 30
days, saved locally. This allows for a more accurate evaluation of the behaviour of the domains,
however a reliable assessment is already possible when the first answer is received. Among
the remaining domains there are many new emerging CDNs and in order to distinguish them
from the FFSNs — which is the main challenge in malicious fast flux detection — we identified
some key indicators. Some of these indicators can be already evaluated after a single query
(we call them static metrics), while others need a certain history (history-based metrics). The
information regarding Autonomous Systems (ASs) and public networks used in the following
metrics are retrieved from [22].
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4.2.1 Static Metrics

The metrics described in this section are evaluated over all the IPs collected.
Maximum Answer Length. A relevant metric for the detection of malicious fast flux is the

number of IPs returned in a single A query. In particular, we consider the maximum mal of
such value: a malicious fast flux is believed to typically have a mal larger than a legitimate fast
flux [15, 42].

Cumulative Number of IPs. Malicious fast flux typically employ a larger number of IPs
(nIP) compared with CDNs, due to the lower reliability of each single node [34].

Cumulative Number of Public Networks. Since the botnet underlying a malicious fast flux
contains infected machines which are typically distributed quite randomly in different networks,
the same is expected to be true for the IPs retrieved by the related queries [15, 42]. For this
reason a malicious fast flux typically has a number of public networks (nnet) larger than a
legitimate CDN.

Cumulative Number of ASs. For the same reason described above, FFSNs typically have a
number of ASs (nAS) larger than legitimate CDNs.

Rescaled AS-Fraction. Metrics defined as

f ′AS = θ(nAS − n0)
[
1− e−(nAS−n0

s )
2]
· nAS − 1

nIP
, (1)

that quantifies the degree to which the IPs are dispersed in different AS. This quantity takes
values from f ′AS = 0 (when all the IPs are in the same AS) to f ′AS ∼ 1 (when each IP is in
a different AS and the number of IPs is large) and encode additional information about the
typical scales associated with nAS for CDNs and FFSNs, respectively. In Eq. 1, θ(·) is the
Heaviside step function (i.e., θ(x) is 1 for positive x and 0 otherwise), s is a scale representing
the average number of ASs in a typical CDN and n0 is a threshold for nAS below which the
behaviour is not suspicious from the viewpoint of the number of ASs, and the ratio between
nAS and nIP is the not-yet scaled AS fraction metrics fAS.

IP-Dispersion. The analysis of the distribution of the retrieved IPs is another way to un-
derstand to which degree the structure underlying FFSN is random and chaotic. We transform
the set of the n IPs associated with each query into the corresponding positions in the 32-bits
IPv4 address space x1, ...xn,1 and we define (i) ∆~x = (xi − xi−1)

n
i=2 as the ordered sequence of

transformed IPs so that xi ≥ xi−1, (ii) ln as the average distance as if the n IPs were uniformly
distributed in the whole public IPs address space, and (iii) q as the 95th percentile. From ∆~x,

we remove elements ∆~xi both bigger than ln and above q, obtaining ∆~y = {∆~̂xj}mj=1. Indeed,
values higher than ln are more likely to correspond to distances between two distinct IP pools
than to one between two subsequent contacted IPs, and such values are not very significant
for the IP-dispersion metric. We exclude them along with the outliers of the distribution (i.e.,
∆~xi > q) to focus on the effective distance among contacted IPs belonging to the same pool.
The IP-dispersion is computed as follows

dIP =


1
ln

mean(∆~y) if m ≥ 0.75 · (n− 1),

1
ln

median(∆~x) otherwise
(2)

where the original median metrics, proposed in [20], is applied only if the cardinality n of ∆~x
is low2. Indeed, the mean better represents dispersion even in the presence of repetitive values

1To each IP n1.n2.n3.n4 we associated x = 2563 n1 + 2562 n2 + 256n3 + n4.
2The choice of which metrics the IP-dispersion should use is based upon experimental evaluations on the

validation set.
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of ∆~x. The IP-dispersion takes value from dIP = 1 (i.e., when the IPs are uniformely distributed
among the whole public IP space) to dIP = 0 (i.e., when the IPs are clearly subdivided into a
few clusters of close addresses). A similar idea was used by Nazario et al. [23], who evaluated
only the average distance among the {xi}, but their metric is more sensitive to outliers and it
is not normalised in the interval [0,1], which is crucial to combine it with the other metrics, as
described in Sect. 4.3. The FFSNs analysis described in Sect. 6 confirmed that the indicator in
Eq. 2 is able to catch the key distribution properties of IPs in a FFSN.

4.2.2 History-Based Metrics

The history is constructed by subdividing the queries retrieved from the monitored network in
subsequent chunks: each chunk contains at least 10 queries and spans a time interval of at least
one hour; these two conditions are the minimal requirements to make the metric definitions
meaningful from a statistical point of view. The metrics described in this section are evaluated
only if it is possible to construct at least two chunks.

Change in the set of IPs. It is a common belief that, while a CDN typically returns IPs taken
from a stable IP-pool, a malicious fast flux employs the available nodes in the FFSN, which
often evolves quickly, and therefore its IP-pool changes from time to time [15, 42]. We defined
a metric which measures in a very simple way the change in the IP-pool cIP = nIP/n

c
IP − 1,

where ncIP is the number of unique IPs present in the chunk averaged over all chunks, while
nIP has been defined in Sect. 4.2. This quantity takes the value cIP = 0 when all the IPs are
found in each chunk, i.e., when the IP-pool is stable and it is explored completely in each chunk
(and therefore ncIP = nIP). On the other hand, if the IP-pool changes substantially from one
chunk to the other, the total number of IPs nIP is much larger than the average number of
IPs ncIP found in a chunk, and therefore cIP becomes large (it is unbounded above). The same
considerations apply to all the following metrics.

Change in the Set of Public Networks. While CDNs typically use IPs taken from the same
few public networks, malicious fast flux frequently introduce IPs from new networks [15, 42].
We measure the change in the set of public networks by means of cnet = nnet/n

c
net − 1, where

ncnet is the network-analogous of ncIP.

Change in the Set of ASs. The generalisation of the previous argument to the next aggrega-
tion level brings us to the analysis of the changes in the number of AS involved. We introduce
therefore cAS = nAS/n

c
AS − 1, where ncAS is the AS-analogous of ncIP.

Change in the Answer Length. Another relevant indicator is the change in the number of
IPs retrieved in each query [15, 42]. We measure this change by means of cal = mal/m

c
al − 1,

where mc
al is the mal-analogous of ncIP.

4.3 Fast Flux Domains Identification

A preliminary step for fast flux domains identification is the filtering of the queries with dIP = 0,
because this removes many false positives with no loss in terms of true positives. The next step
is the use of the metrics defined in Sect. 4.2 to discriminate among malicious fast flux and
CDN. We aggregate the static and history-based metrics separately, and finally we combine
them into a single anomaly indicator A, which can straightforwardly be used to classify the
queries between fast flux and legit domains.
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4.3.1 Aggregation of the Static Metrics

We normalised the metrics nIP, nnet, nAS, and mal in the interval [0,1], so that for all of them
the value 0 corresponds to a typical CDN, while 1 corresponds to the expected behaviour of a
malicious fast flux. This is achieved by means of a square-exponential scaling of the form

x −→ 1− e−( x−x0
s )

2

, (3)

where x0 = 1 is the minimum value for the metric before the rescaling, s is different for each
metric and represents an intermediate scale between a typical CDN behaviour and a behaviour
clearly ascribed to a malicious fast flux.3 After the scaling, we combined these indicators with
a weighted arithmetic mean in a unique static index4

Astat = wIPnIP + wnetnnet + wASnAS + walmal + wffAS + wddIP. (4)

4.3.2 Aggregation of the History-Based Metrics

As already mentioned, the metrics cIP, cnet, cAS, and cal defined in Sect. 4.2 are unbounded
above. We normalise them in the interval [0,1] by means of Eq. 3 with x0 = 0 (as the minimum
value for these metrics before the rescaling is 0).5 After the rescaling, all the metrics take
values in the interval [0,1] and for each of them a value close to 0 corresponds to a very stable
behaviour, while a value close to 1 indicates a behaviour with high variability over time. We
combine then in a unique indicator three of the history-based metrics (the fourth, i.e., cal is
instead used in Eq. 6) with a weighted arithmetic mean6

Adyn = w′IPcIP + w′netcnet + w′AScAS. (5)

4.3.3 Final Aggregation

We combine the indicators Astat, Adyn, and cal into a single anomaly indicator A, which should
be used to classify the queries between fast flux and legit domains. In order to reduce false
positives, we differentiate on the basis of the quantity fAS, and we define

A =

{ ∑
i wiAi if fAS ≥ 0.5∏
i(Ai)

wi if fAS < 0.5
, (6)

Table 2: Test-network description
30-days total one-hour average

N. of machines 391 -

N. of client machines 286 -

N. of connections 70 M 100 k

N. of resolved A-type DNS queries 27 M 40 k

N. of unique resolved A-type DNS queries 200 k 820

3The values of s were set based on information retrieved from the literature ([42] and references therein)
and the validation set. More in detail, we chose sIP = 24, snet = 12, sAS = 6, and sal = 10.

4The weights reflect the importance of the corresponding metric in the correct classification in the validation
set; the optimal values are wIP = wnet = 0.03, wAS = 0.13, wal = 0.09, wf = 0.54, and wd = 0.18.

5The values of s were set based on information retrieved from the literature and the validation set. More in
detail, we chose sIP = snet = 1 and sAS = sal = 0.5.

6The weights reflect the importance of the corresponding metric in the validation set; the optimal values are
w′IP = 0.07, w′net = 0.23, and w′AS = 0.7.
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where {Ai} = {Astat, Adyn, cal} and {wi} are the related weights.7

The detection of malicious fast flux has thus been reduced to a very simple one-dimension
classification problem: only queries with A > Ath are labeled as fast flux, where the optimal
threshold (Ath = 0.25) has been found by maximizing the performance on the validation set.
In order to increase the readability of the results, we applied a sigmoid-shaped rescaling which
maps A = 0 and A = 1 onto themselves and Ath onto 0.5.

5 Experimental Evaluation

The fast flux detection algorithm described in Sect. 4 was evaluated over a test set comprising
30 days of ordinary traffic of the network described in Table 2 with the injection of fast flux
traffic which covers all the most relevant fast flux attack scenarios (see Table 3 for a complete
list). Note that the test set has been only used to test the performance of the algorithm and
not to modify the algorithm or the parameters. In addition, the test set has been updated to
2021 by collecting again the dataset and its network-related information.

Table 3: Malware description
Category Campaign Domains (A) 〈A〉
Banking
Trojan

ZBOT miscapoerasun.ws (0.85) 0.85

Banking
Trojan

Dreambot rahmatulahh.at (0.89); ardshinbank.at (0.92) 0.91

Banking
Trojan

Ursnif
widmwdndghdk.com (0.90); bnvmcnjghkeht.com (0.85);

qqweerr.com (0.85)
0.87

VBA
Dropper

Doc Dropper
Agenta

aassmcncnnc.com (0.90); iiieeejrjrjr.com (0.87);
ghmchdkenee.com (0.88)

0.88

Ransomware Locky
thedarkpvp.net (0.83); nsaflow.info (0.91); mrscrowe.net

(0.93); sherylbro.net (0.87); gdiscoun.org (0.90);
scottfranch.org (0.90)

0.89

Ransomware Nymaim

iqbppddvjq.com (0.91); danrnysvp.com (0.91);
pmjpdwys.com (0.93); vqmfcxo.com (0.86); gbfeiseis.com

(0.91); danrnysvp.com (0.87); iuzngzhl.com (0.97);
vpvqskazjvco.com (0.84); jauudedqnm.com (0.93);

dtybgsb.com (0.93); tuzhohg.com(0.93); sxrhysqdpx.com
(0.86); arlfbqcc.com (0.93)

0.90

Banking
Trojan

Zeus Panda
farvictor.co (0.89); fardunkan.co (0.89); bozem.co (0.84);
farmacyan.co (0.87); fargugo.co (0.90); manfam.co (0.85)

0.87

Banking
Trojan

GOZI ISFB

qdkngijbqnwehiqwrbzudwe.com (0.80);
jnossidjfnweqrfew.com (0.90); zxciuniqhweizsds.com (0.86);

huwikacjajsneqwe.com (0.92); efoijowufjaowudawd.com
(0.92); onlyplacesattributionthe.net (0.90);

nvvnfjvnfjcdnj.net (0.86); popoiuiuntnt.net (0.89);
zzzzmmmsnsns.net (0.80); popooosneneee.net (0.83);

liceindividualshall.net (0.87); roborobonsnsnn.net (0.93)

0.87

Ransomware GandCrab zonealarm.bit (0.90) 0.90
Backdoor ServHelper medastr.com (0.74) 0.74

Banking
Trojan

Ursnif
goose-mongoose.at (0.84); roiboypo.ru (0.84);
roiboypoleno.ru (0.84); thatallmafaka.at(0.78);

to4karu.ru(0.78); zvednyisvet.ru(0.78)
0.81

aDoc.Dropper.Agent-6332127-0 [37]

7An optimisation procedure on the validation set produced similar weight for the three quantities: wstat =
0.27, wdyn = 0.38, and wal = 0.35.
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The fast flux traffic has been injected in the network via 50 pcaps — collected from public
repositories [6, 39, 30, 5] — which are associated with 11 different malware campaigns, widely
spread in the very last years. It is worth noting that, with respect to the extended version
of this paper [20], we have included 3 new samples (listed in the last two rows of Table 3) to
show how fast flux are still a relevant attack technique. In particular, Table 3 provides a brief
description of each malware campaign with the following information: the category (i.e., the
malware type associated with the campaign), the name of the campaign, the list of the domains
present in each pcap of the campaign with the anomaly indicator A associated by the algorithm
to each one of them, and the average value of A for each campaign.

Table 3 clearly shows that the proposed method successfully detected all the fast flux do-
mains with a high anomaly indicator. In fact, the value of A averaged over all campaigns is
equal to 0.86.

In Table 4, we summarise the performance of the algorithm: in the second column we
consider the total number of outputs of the algorithm (i.e., the number of domains with A > 0)
while in the third column we report the number of outputs labeled as fast flux (i.e., the number
of domains with A > 0.5). On the rows, we report the following quantities: the number of unique
fast flux domains correctly detected (i.e., True Positives TP ), the ones incorrectly labeled as
legit (i.e., False Negatives FN ), the number of unique legit domains incorrectly labeled as fast
flux (i.e., False Positives FP ), and their corresponding rates. All rates are given as absolute
values and as percentages for each type on the corresponding number of unique domains in
input.

It is important to note that, with the application of the new metric reported in Equation 2,
the algorithm generates more output events but, in the majority of the cases, the anomaly
score A is less than 0.5, making the actual number of queries wrongly labeled as fast flux lower.
Another remarkable result is the absence of false negatives: this determines indeed a 100%
recall, also known as detection rate, R = TP /(TP + FN ). In order to evaluate the algorithm
also with a metric that takes into account the false positives rate FP , we computed the F-score
F = 2P R/(P +R) (where P = TP /(TP + FP )), obtaining F = 99.0%.

As a comparison, [34] obtained R = 94.4% and F = 89.5% in their best experimental result.
We can therefore conclude that the proposed method is able to detect queries to fast flux
domains in a corporate network in near-real-time and with high anomaly indicators, limiting
false positives at the same time.

Table 4: Results
A > 0 A > 0.5

True Positives (TP ) 54 (100%) 54 (100%)
False Negatives (FN) 0 (0%) 0 (0%)
False Positives (FP ) 13 (<0.065%) 1 (<0.001%)

6 Fast Flux Service Networks Detection in aramis

The extended version of this paper [20] reports an in-depth analysis of the proposed FFSN
detection method on malicious IPs, collected for over a month in 2018 via active DNS analysis,
from a set of public repositories [6, 39, 30, 40]. Such analysis revealed that a large number of
IPs corresponds to two famous FFSNs: Dark Cloud and SandiFlux, responsible for widespread
malware campaigns [26, 38, 12, 18, 28]. Both FFSNs have been correctly identified by our
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approach and, as we mentioned in Section 3, the proposed detection method has been included
in our commercially available network security monitoring platform aramis.

In 2019 and 2020, aramis has been able to detect many attacks relying on fast-flux techniques
as, for example, one of the offspring of the original Gozi, named Ursnif [38, 11]. It is a widely
distributed banking Trojan that uses Microsoft Office Documents to get into victims’ machines
and, then, contact its command-and-control server to further receive additional commands. Af-
ter a thorough investigation, we have discovered that the attacks are part of a greater malicious
spam campaign targeting companies through fraudulently branded e-mails, familiar to the re-
cipient victims. More recently, aramis have also detected an unidentified adware that relies on
a FFSN. Table 5 shows a summary of some of the metrics presented in Section 4 and evaluated
over Dark Cloud and Sandiflux, the into-the-wild attacks detected by aramis, and three large
CDNs. It is worth noting that even if Ursnif and the unidentified adware do not have history-
based associated features, and two of the reported CDNs (i.e., www.nationalgeographic.it and
cdn.wetransfer.net) have a very large number of IPs, the proposed detection method can still
identify FFSNs.

Table 5: Summary of some relevant metrics
nIP nAS nresc

IP nresc
AS crescAS f resc

AS dIP
Dark Cloud 2856 354 1 1 1 1 1.2 10−3

Sandiflux 6203 1517 1 1 1 1 0.69
Ursnif 10 10 0.13 0.90 - 0.90 0.18
Unidentified adware 10 1 1 0 - 0 0.33
www.nationalgeographic.it 2478 1 1 0 0 0 2.6 10−6

cdn.wetransfer.net 2734 1 1 0 0 0 2.9 10−6

neo4j.com 29 1 0.74 0 0 0 5.1 10−4

7 Conclusions

In this paper, we proposed a fast flux detection method based on the passive analysis of the DNS
traffic of a corporate network. The analysis is based on aramis security monitoring system. The
proposed solution has been evaluated by injecting 50 pcaps associated with 11 different malware
campaigns that leverage FFSNs and cover a wide variety of attack scenarios, ranging from 2015
to 2020. The improvement of the IP-dispersion metrics allowed aramis not only to correctly
detect all the fast flux with a very low false positive rate, but also to reduce the false positives
that have an anomaly indicator higher than 50%. The comparison of performance indicators
with a state-of-the-art work shows a remarkable improvement. An in-depth active analysis of
a list of malicious fast flux domains and the detection of malware campaigns backed up by a
FFSN infrastructure confirmed the reliability of the metrics used in the proposed algorithm.
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Abstract

The constant growth in the number of malware - software or code fragment potentially
harmful for computers and information networks - and the use of sophisticated evasion
and obfuscation techniques have seriously hindered classic signature-based approaches. On
the other hand, malware detection systems based on machine learning techniques started
offering a promising alternative to standard approaches, drastically reducing analysis time
and turning out to be more robust against evasion and obfuscation techniques. In this
paper, we propose a malware taxonomic classification pipeline able to classify Windows
Portable Executable files (PEs). Given an input PE sample, it is first classified as either
malicious or benign. If malicious, the pipeline further analyzes it in order to establish its
threat type, family, and behavior(s). We tested the proposed pipeline on the open source
dataset EMBER, containing approximately 1 million PE samples, analyzed through static
analysis. Obtained malware detection results are comparable to other academic works in
the current state of art and, in addition, we provide an in-depth classification of malicious
samples. Models used in the pipeline provides interpretable results which can help security
analysts in better understanding decisions taken by the automated pipeline.

Keywords: automated security analysis, malware pipeline, malware classification,
malware detection, static analysis.

1 Introduction

Malware (short for malicious software) is the generic term used to refer to unwanted software
developed to infect and interfere with the operations of a single machine or networks of com-
puters [1, 2]. Since the first documented virus appeared in the 1970s, the evolution of computer
science has always been accompanied closely by the creation of new, better and more harmful
malicious software, in a constant fight between malware developers and security analysts. In
recent years, though, the refinement and emergence of new software technologies have allowed
an exponential growth in the number of malware in circulation, not only vertically (volume)
but also horizontally (types and functionality) [3]. Together with the ever more sophisticated
evasion techniques being developed by attackers, security experts and anti-malware vendors
struggle to keep up the race by means of “standard” methods, i.e. signature-based and heuris-
tics [4, 5, 6]. In this context, machine learning (ML) seems to be the most promising tool for an
automated analysis and prevention of this kind of threats [7]. The strength of ML is its ability
to automatically identify hidden patterns and correlations in large volumes of raw data, and
exploit these statistical features to, in the case of malware analysis, recognise previously unseen

∗This is a preliminary work on the development of a pipeline capable of exhaustively characterizing analyzed
Windows PE samples.
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attacks. Generally speaking, classic ML approaches for cyber security purposes focus on a first
phase of features extraction through static, dynamic or hybrid analysis. These features are
then used to train models that allow to classify malicious and benign files. More recently, the
advancements in deep learning methods has inspired a series of studies exploiting other input
formats, like raw binaries [8, 9] and image representations [10, 11, 12] among others. Histori-
cally, researchers and security vendors have mostly been more focused on creating models for
the detection of malicious and benign files rather than exploring the possibility of using ML
for an in-depth analysis of single malware samples. A reason for this might be the difficulty
in collecting large and well-annotated datasets, a complex and expensive task, together with
the intrinsic difficulty in classifying the characteristics of malwares due to the presence of many
variants and the lack of a standard nomenclature [13, 14, 15].

Endgame — now Elastic — released in 2017 the first version of an open-source dataset called
EMBER (Elastic Malware Benchmark for Empowering Researchers) containing semi-raw static
features from more than 1 million Portable Executable (PE). In 2018, they released a second
version of the dataset, using more recent malware, correcting issues in the data collection,
and providing also labels for malware classes, using the open source tool AVClass [16]. This
tool allows to parse and organise, in a definite taxonomy, the different nomenclatures returned
by multiple anti-virus vendors. Exploiting and integrating the last version of the EMBER
dataset as described in detail below, we explore the possibility of training a machine learning
pipeline for a full, automated analysis of PEs using static features, from malware detection to
classification by threat-type, family, and behaviour. At the time of writing, there is no academic
paper that has explored the possibility of leveraging the EMBER dataset for a taxonomic
malware classification. The paper is organized as follows: Section 2 presents related works,
while Section 3 details the EMBER dataset. The proposed classification pipeline is described
in Section 4 and experimental evaluation results are reported in 5.

2 Related Work

In the last decade, the number of studies on machine learning detection techniques is constantly
increased thanks to: i) the recent growth of new and powerful algorithms and data wrangling
methods, ii) the increase in computational capabilities, and iii) the availability of public, an-
notated malware datasets [17, 18, 19, 20, 21]. However, most of these works only consider the
problem of distinguishing malicious software from benign. Furthermore, many papers rely on
small or outdated datasets that are unlikely to provide a statistically-significant representation
of malware population and labelling procedures create a bias towards easier datasets [22, 23].
The above considerations resulted in a general difficulty in assessing the real performance of
these methods “into the wild” and a general incapacity to deliver models that can be effectively
deployed, despite notable results summarized in [22]. Nevertheless, many recent works have
been very effective in detecting malware, reaching almost perfect performances in accuracy.

In this scenario, the authors of the EMBER dataset provided a benchmark model in 2018,
trained on their latest release of the model, obtaining a 86.8% detection rate at 0.1% False
Positive Rate (FPR). Results obtained in the previous model release reported a 93% detection
rate [24], meaning that the EMBER dataset developers have successfully hardened the process
of correctly classifying malicious samples. Despite more recent works on the same dataset
provide small improvements in the detection rate [25, 26], they usually rely on deep learning
frameworks that make more difficult to interpret model outputs.

To our knowledge, there are no published works that used the 2018 EMBER dataset for
a multi-class classification in malware families. Among the studies that tackle the problem
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of classifying malware families [27, 28, 29, 30], Ahmadi et al. [10] considered the Microsoft
Malware Classification Challenge data, a labeled dataset of about 20, 000 malware samples
representing a mix of 9 different families1, to build a model for malware families classification.
While the dataset is much smaller than EMBER and thus the performances are difficult to
compare, they obtained a notable 0.997 accuracy over a 5-fold cross validation, considering a
set of features similar to those used in the EMBER model, suggesting their robustness for both
malware detection and family classification.

Malware behaviour classification is usually based on dynamic or hybrid analysis [31, 32, 33].
This is not surprising, since malware behaviour is expected to manifest itself only upon execu-
tion [22]. Nevertheless, we believe that it is still interesting to assess behavioral classification on
purely static analyses contained in EMBER. We have not find any previous work considering
the problem of an integrated, hierarchical malware classification into threat-type, family, and
behaviour using features from static analysis.

3 Data description

3.1 The EMBER dataset

In this work we consider the 2018 release of the EMBER (Elastic Malware Benchmark for Em-
powering Researchers) dataset, an open source benchmark collection of 1 million PEs scanned
in or before 2018 [34]. The data comes split in two separate sets containing the training and
test data. The training set consists of 600,000 labeled samples (benign or malware) and 200,000
unlabeled samples the we did not consider in this study. The test set contains 200,000 labeled
samples. The authors claim that the particular splitting between train and test is specifically
engineered for having a “harder” dataset with respect to the first release [24]. Each sample
comes as a JSON object and is uniquely identified via its sha256 and md5 hashes, and provides
semi-raw information for static malware analysis parsed using the LIEF open source package
[35] and divided in nine major groups: General, header, and section information, imported
and exported functions, strings information, raw-byte histogram, and byte-entropy histogram.
Finally, additional information is given on the label (0 for benign files, 1 for malicious files, and
-1 for unlabeled files), the coarse time stamp of estimate first detection of the malware, the
malware class extracted from the VirusTotal [36] report using the open source tool avclass [16].
A full description of the dataset can be found in [34, 24]. As explained in detail in section 4,
we consider all the 600,000 labeled training data for training and validating each stage of the
classification pipeline, while the test set will be used only to asses the global performance of
the pipeline, mimicking its usage in a real-world scenario.

3.2 Threat-type and behaviour labels collection

The EMBER dataset only provides the malware/benign and a generic “avclass” labels (the
output of the AVClass tool [16] for family tagging). In order to classify a specific malware
sample by threat-type, family, and behavior, we used the open-source tool AVClass2 [37], not
yet available when the EMBER dataset came out, to systematically extract information on the
malware threat-type and behavior for each labeled sample in the dataset. Our final dataset
consists of the data from the EMBER original dataset plus four labels: malware/not-malware,
and if malware its threat-type, family and behavior classes where available. It is important to
note that AVClass2 parses the malware label returned from each of the AV vendors and returns

1https://www.kaggle.com/c/malware-classification
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Figure 1: Frequency of the target classes for the three different types of classification stages.
The horizontal axis is in logarithmic scale.

a ranking of the returned labels, not necessarily a single result per class. As a consequence, while
a powerful tool tailored for each AV vendor and including a complete malware taxonomy, still
suffers from the lack of a shared nomenclature across different security vendors. Furthermore,
the estimated accuracy of the output labels is reported to be around 90% for families (threat-
type and behavior not reported) [37], so that we must take into consideration the inherent
imperfect labelling of the data.

3.3 Classification target

Looking at figure 1 we can see that for each of the classification stages of the pipeline the classes
are heavily unbalanced (note the logarithmic scale). In particular, the “Family” group has a
very large number of poorly populated classes in the train set. We thus kept the first 20 families
and grouped all the remaining in a single class named “other”, that now represents the most
populous class. We will discuss the effects of this unbalance in section 5. For the threat-type we
can see that, as expected, the most represented classes are greyware, viruses, and downloaders,
while dialers are by far the less common with only few tens of samples. Regarding malware
behavior, the first two classes -filemodify and execdownload- make half of the total samples.
Coherently with the threats, class “dial” is the class with fewest samples.

4 Pipeline Architecture Overview

As introduced in Section 1, the main goal of the proposed pipeline is to accurately classify
malware using different stages of processing, each one leveraging a properly trained classifier.
Figure 4 shows how we implemented the pipeline: the first stage detects whether input samples
are malicious or benign; those classified as malicious are propagated to the second stage, which is
responsible for labeling them with a known malware category (e.g., virus, backdoor, greyware).
It is worth noting that, in this and the next stages, we employ (different) classifiers able to
recognize misclassified benign samples, results of errors occurred in the previous stages. After
being categorized, malicious files are further classified in families (e.g., xtrat and vtflooder).
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Figure 2: Representation of the proposed classification pipeline.

Analogously to the previous stage, the employed classifier is able to discriminate benign samples
— identified as malicious — but also classify malicious samples belonging to less recurrent
families into a specific class, called other. Finally, different malware families are classified
according their malicious behaviour. Whenever a sample is classified incoherently through the
pipeline, that is, is classified as malware is the detection stage but as a benign in some next
stage, we envision another stage that gathers all these suspicious samples, the quarantine, and
reclassifies again them to improve the overall malware detection performance.

For training pipeline’s classifiers, we use the same data flow described above: samples used
to validate a classifier in a stage are, then, provided in input to the next stage to train the
following classifier. During the training phase, at each stage of the pipeline -detection and
threat-type, family, and behavior classification-, the output of the preceding stage is split into
train and validation sets, and a Gradient Boosting Decison Tree (GBDT) classifier is trained and
its hyper-parameters optimized for the specific task. We used the Python API implementation
of Microsoft’s LightGBM2 open source framework, that proved to be the the optimal solution
between training time and performance [38].

As described in the original EMBER benchmark model [24], the raw features of each sample
are mapped into a fixed-size vector of length 2351. In this work we start from the same feature
set but we one slight modification. The original feature vectors rely heavily on the hashing
trick in order to contain the variable and potentially very large number (order of millions) of

2https://github.com/microsoft/LightGBM
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imported functions, while here we chose to keep only the first 151 most common ports in order
to keep the balance with the other major groups of features. A comparison between our model
and the original EMBER results shows that the model performance is comparable (86.3% TPR
@ 0.1% FPR versus 86.8% TPR @ 0.1% FPR of EMBER’s model), but with the advantage of
a more interpretable result in our case.

5 Experimental Evaluation

Table 1 summarizes the experimental evaluations carried out on the proposed pipeline. For
completeness, it reports both the results obtained during the validation and testing of the
classifiers. Obtained results in the first stage (i.e., detection stage) are comparable with those
obtained by EMBER developers [34]. It is important to note that our pipeline is able to correct
false positives (benign samples detected as malicious), as discussed later in this section.

Samples predicted as malicious are then propagated to the stage that classifies threat types.
Results reported in Figure 3 show that this stage has encountered the most troubles in classifying
samples: indeed, benign samples are easily confused with grayware, viruses, and downloaders
and the separation among different classes is not so clear (for example, as rootkits and grayware).
Another aspect to take into account is the fallacy of the ground truth we used to train the
threat-type stage classifier: further discussions are outlined in Section 6. Conversely to the
previous stage, family classifier is more accurate in classifying specific families. More than 63%
of families have been correctly classified with an accuracy greater than 85%, with many families
having almost all their test samples identified by our classifier (e.g., xtrat, vtflooder, sivis, and
upatre). 84% of misclassified benign samples fall in the ‘other’ class and this can be explained
by having too few benign samples to build a classifier that is able to identify them. Further
discussions are left in Section 6.

The last stage of the pipeline consists in classifying malicious samples by their behavior. For
space constraints, we do not show the confusion matrix associated to the behavior stage. Similar
to the threat-type classification stage, the behavior classifier fails to correctly recognize some
specific behaviors (such as, autorun and osmodify). In addition to potential similar behaviors,
another cause of misclassification is the few number of samples employed to train the behavior
classifier: less than 20, 000 instances to train the classifier on more than 20 different behaviors.

As described in Section 4, samples classified as benign in stages after the first one are
quarantined for further analyses. Of all the 200,000 total samples in the test set, only 1150
(0.57%) end up in the quarantine stage. The classifier is able to recover 221 benign samples that
were misclassified in the initial detection stage and, more importantly, recovered 635 malicious
samples that were incorrectly labeled as benign in one of the classification stages.

Table 1: Results of the experimental evaluation carried out on the EMBER dataset reporting
accuracy, AUC, false positives, and false negatives metrics both for validation and test phases.

Validation Test
Metrics Detection Type Family Behavior Detection Type Family Behavior
Samples 300,000 72,257 35,934 17,842 200,000 99,314 98,611 98,452
Accuracy 0.981 0.893 0.891 0.841 0.969 0.847 0.890 0.837

AUC 0.997 0.981 0.988 0.972 0.995 0.961 0.984 0.952
False positives 2,564 1,030 482 214 3,136 2,945 2,853 2,740
False negatives 3,225 202 78 70 3,033 512 67 181

6



Malware classification pipeline Loi, Borile and Ucci

be
ni

gn
_t

yp
e

gr
ay

wa
re

vi
ru

s

do
wn

lo
ad

er

ba
ck

do
or

wo
rm

cli
ck

er

ra
ns

om
wa

re

sp
yw

ar
e

m
in

er

ro
ot

ki
t

ke
yl

og
ge

r

ro
gu

ew
ar

e

di
al

er

Predicted label

benign_type

grayware

virus

downloader

backdoor

worm

clicker

ransomware

spyware

miner

rootkit

keylogger

rogueware

dialer

Tr
ue

 la
be

l

0.06 0.29 0.28 0.19 0.05 0.07 0.00 0.02 0.01 0.01 0.02 0.00 0.00 0.00

0.00 0.88 0.01 0.05 0.01 0.02 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.95 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.04 0.02 0.90 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.03 0.00 0.01 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.07 0.03 0.08 0.02 0.78 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.10 0.12 0.13 0.04 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.04 0.01 0.03 0.01 0.01 0.00 0.88 0.01 0.00 0.00 0.00 0.00 0.00

0.04 0.28 0.02 0.22 0.01 0.01 0.00 0.13 0.28 0.00 0.00 0.00 0.00 0.00

0.01 0.16 0.02 0.07 0.05 0.03 0.00 0.03 0.01 0.62 0.00 0.01 0.00 0.00

0.00 0.32 0.03 0.20 0.06 0.03 0.00 0.00 0.05 0.00 0.29 0.02 0.00 0.00

0.00 0.20 0.13 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.27 0.00 0.00

0.03 0.13 0.05 0.41 0.08 0.05 0.00 0.03 0.08 0.00 0.00 0.00 0.15 0.00

0.00 0.00 0.17 0.25 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.42

 Type - Confusion matrix 

Figure 3: Confusion matrix for the threat-type
classification stage reporting the performance,
in terms of accuracy, on the test set described
in Table 1.
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Figure 4: Confusion matrix for the family clas-
sification stage reporting the performance, in
terms of accuracy, on the test set described in
Table 1.

5.1 Feature Importance

The LightGBM framework [39], roughly speaking, builds a strong learner upon an ensemble of
decision trees as weak learners. Decision trees assign at each learning step a dichotomous split
on feature values based on the maximum obtainable information gain, so that it is a highly
interpretable ML model.

Looking at table 2 we can see that features having the highest importance are common in
almost all the stages, but each stage is characterized by a different ranking in the features’
importance, confirming the differences in the various typology of classes and the necessity to
use different models in each stage of the pipeline. Among the most frequent features we note the
virtual size, that is known to be a highly discriminative feature in malware classification [40].

It is interesting to note that the most important features for the quarantine stage, that
is, the last stage in which we try to recover some wrong classifications of the previous stages,
belong to the major groups of the byte entropy and printable strings. Since it has been observed
that entropy and the presence or not of readable strings are correlated to the presence of packed
or encrypted code, this could be suggestive of the fact that the “hardest” samples to correctly
classify might be packed or encrypted, a known evasion techniques and a clear limitation to an
approach based solely on static analysis.
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Detection Class (Type Threat)
Section:Entropy Hashed Header:dll charateristics Hashed
Data Directories:RESOURCE TABLE:size Section:Entropy Hashed
General Info:Vsize Header:timestamp
Section:Vsize Hashed General Info:Vsize
Data Directories:RESOURCE TABLE:size Data Directories:RESOURCE TABLE:size

Family Behavior
Header:dll charateristics Hashed General Info:Vsize
Data Directories:RESOURCE TABLE:size Header:dll charateristics Hashed
General Info:Vsize Header:timestamp
Section:Entropy Hashed Data Directories:RESOURCE TABLE:virtual address
Strings:printabledist General Info: n° imports

Quarantine
Byte Histogram
Strings:printabledist
Byte Entropy Histogram

Table 2: Top feature groups for the detection, threat-type, family, behaviour, and quarantine
classification stages.

5.2 Model Interpretability

In order to better understand the distribution of our data in the high-dimensional original
feature space and, hence, be able to identify regions in which a certain classification stage
might be less reliable, we apply UMAP [41, 42], a non-linear and unsupervised dimensionality
reduction technique, to the full feature vector of size 1252 keeping the first 3 components. In
turn, this allows also to suggest a potential data mislabelling that could need an analyst further

Figure 5: 3-d representation of 5 different malware families. On the left the train set (fitting
phase), on the right the test set. The frequency of the classes in the train e test set are highly
uneven.
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Figure 6: Prediction probability obtained by providing in input previously unseen benign sam-
ples to a family classifier, trained only on malware samples.

inspection.

In figure 5, we show the resulting embedding for the first five most frequent families. We can
see that all different families are generally well separated, often forming isolated sub-clusters
that can be linked to specific types or variants of the main malware class. Other regions show
instead a mixing of various classes. That is where the classification is more difficult and the
model is more likely to fail. There are various reasons for the appearance of this regions:
first of all, as explained in section 3.2, the labels are not uniquely defined and thus it could
simply be an effect of an imperfect labelling. Moreover, as pointed out in Section 5.1, many
classification errors are likely to be linked to the presence of packing or encryption, that is a
well known limitation to static analysis. Nevertheless, an analyst using our model could easily
assess the confidence in the classification based on the position of the considered sample in this
low-dimensional space, providing an useful tool for interpreting the results.

6 Discussion

As discussed in 5, some issues arise in the different stages of the pipeline due to: (i) mislabeling
of malware families reported in the EMBER dataset (refer to Section 3), (ii) overlaps among
different threat types and behavior, and (iii) few samples used to train classifiers in the last
stages of the pipeline.

Regarding the second issue, we have observed that malware behaviors are not completely
independent one from another: as an example, osmodify is often confused with filemodify and
execdownload behaviors, because in AVClass it is associated with rootkit malware that, in gen-
eral, establishes communications with command-and-control servers to receive new commands
and malicious payloads. Finally, Table 1 reports how the number of input samples, useful to
train stage classifiers, is halved at each stage. As mentioned in Section 5, few samples explain
poorer performance in accuracy for family and behavior classifications.

9
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A final consideration regards, instead, the choice of using classifiers able to discriminate
between malware and benign samples to refine the overall classification process. The idea
was born out of trained classifiers’ capacity of accurately distinguishing between malicious and
benign samples. As an example, Figure 6 shows the confidence that a different family classifier,
trained only on malware samples, has in assigning previously unseen benign samples to other
class. As already discussed in Section 5, it includes more than 2, 800 malware families that have
too few samples to build a classifier able to identify them, as already mentioned in Section 3.3.
It is worth noting that no benign samples has been classified as belonging to one of the most-
frequent malware families of the EMBER dataset, listed on the x -axis of Figure 6. The plot
has been computed on 100, 000 benign samples, extracted from the test set used for the family
classification stage.

This supports our hypothesis that the poor performance in correctly detecting benign sam-
ples in the classification stages of the pipeline is due to the very small number of benign samples
during model training (≈ 1% of all the benign samples).

7 Conclusion and Future Work

In this work we proposed a first implementation of a pipeline for a complete classification
of Windows PE files using a machine learning approach on static features. The pipeline is
able to separate benign and malicious samples, and for those samples classified as malicious
it provides a exhaustive classification in terms of threat-type, malware family, and behaviour.
Classification results, although suffering from known limitations such as the size of the training
data, the imperfect labelling of the ground truth, and the semantic gap of models based on
static features only, are comparable to the current state of the art for similar works while
providing much more detailed information on malware characteristics. Finally, the extracted
feature vector characterising the raw PE and the specific ML model implemented provide an
interpretable result, and the pipeline is scalable to much larger datasets. Therefore, we consider
this work as a first step towards a useful tool that can help security analysts to manage novel
threats, reducing time and costs of the analysis. For the near future, we plan to improve the
described pipeline by: (i) considering a larger dataset for training (ii) fixing the ground truth
and considering the possibility of a multi-label classification scheme, and (iii) further explore
the properties of the embedded features’ space described briefly in section 5.2. It could be
interesting to include also a detector for packed/encrypted samples in the early stages of the
pipeline, and move to a hybrid approach, combining static and dynamic features for a better
characterization of the sample files.
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Abstract

Detecting covert channels among legitimate traffic rep-

resents a severe challenge due to the high heterogeneity of

networks. Therefore, we propose an effective covert chan-

nel detection method, based on the analysis of DNS network

data passively extracted from a network monitoring system.

The framework is based on a machine learning module and

on the extraction of specific anomaly indicators able to de-

scribe the problem at hand. The contribution of this paper is

two-fold: (i) the machine learning models encompass net-

work profiles tailored to the network users, and not to the

single query events, hence allowing for the creation of be-

havioral profiles and spotting possible deviations from the

normal baseline; (ii) models are created in an unsupervised

mode, thus allowing for the identification of zero-days at-

tacks and avoiding the requirement of signatures or heuris-

tics for new variants. The proposed solution has been eval-

uated over a 15-day-long experimental session with the in-

jection of traffic that covers the most relevant exfiltration

and tunneling attacks: all the malicious variants were de-

tected, while producing a low false-positive rate during the

same period.

1 Introduction

One of the most serious threats to the current society

is represented by cybercrime, with heavy and sometimes

dramatic consequences for many companies, organizations

and single individuals [27, 28, 38, 55, 60]. Data exfil-

tration, in particular, plays a key role in the cybercrime

scenario, as it is related to the stealing of sensitive infor-

mation [26]. Among different techniques of exfiltration,

covert channels represent a significant threat for defenders,

as they are widely used and their detection is challenging.

A covert channel [62] can be defined as a way to commu-

nicate, transfer or exfiltrate data while exploiting network

resources never intended for this purpose. The aim of such

a technique is to extract sensitive information from organi-

zations and companies, while eluding conventional security

measures (e.g., intrusion detection systems and firewalls).

Among the reasons that make covert channels a se-

vere menace for threat hunters, it is worth mentioning the

following: (i) conventional intrusion detection and fire-

wall systems typically fail in the detection of covert chan-

nels; (ii) the network traffic varies considerably, thus caus-

ing detection issues for classical statistical approaches to

covert channel detection; (iii) related to the previous two

points, another issue is the difficulty in distinguishing covert

channels between legitimate communications, this is often

caused by the absence of focus on users behavioral analy-

sis; (iv) although many works focus on the process of tunnel

attacks, only a very restricted number of them analyzes the

properties useful to describe the data exfiltration process.

In this paper, we propose an effective technique for the

detection of DNS covert channels, based on the analysis of

network data passively extracted by a network monitoring

system. The proposed framework is based on a machine

learning module and on the extraction of specific anomaly

indicators able to describe the problem at hand. The fo-

cus of the machine learning module is the creation of mod-

els embedding the behavioral characteristics of a user and

hence spotting possible deviations from the normal base-

line. The power of this approach is the ability to identify

zero-days attacks, without the requirement of signatures or

heuristics for new variants. However, it may carry the draw-

back of highlighting also non-malicious events that are sim-

ilar to covert channels from the perspective of DNS behav-

ior. This could lead to a large number of false positives, but

it is mitigated by a subsequent advanced analytics module,

which encodes cyber security knowledge. This structure al-

lows the proposed framework to identify a dual typology of

attacks: (i) exfiltration, and (ii) tunneling.

The remainder of the paper is structured as follows.

Sect. 2 provides an overview of the related work. In Sect. 3

we briefly describe the monitoring platform containing the
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covert channel detection method, which is the focus of

this paper. After an introduction on the problem, given in

Sect. 4, the proposed approach is described thoroughly in

Sect. 5. Finally, we discuss the experimental results in de-

tails in Sect. 6 and possible future developments in Sect. 7.

2 Related Work

State-of-the-art works regarding covert channels usually

distinguish between two different types: (i) storage covert

channels [13], where covert bits are strictly bounded to

the communication protocols under analysis (e.g., IP, DNS,

HTTP, SMB, SSL); (ii) timing covert channels [52], based

on the manipulation of timing or on the ordering of network

events (e.g., packet arrivals).

Depending on the type of covert channel, associated de-

tection technique may also vary: (i) for the storage covert

channels, typical detection methods involve Markov Chains

and Descriptive Analytics [12]; (ii) for the timing covert

channels, many different approaches have been considered,

in particular: statistical tests of traffic distribution [47], reg-

ularity tests of time variations within the traffic [22], and

machine learning methods [50] such as Support Vector Ma-

chines (SVMs) [3] and Bayesian Networks [2].

The detection framework proposed in this article focuses

on storage covert channel, while borrowing some detection

techniques typically used for the detection of timing covert

channels, e.g., the use of SVMs. For the proposed tech-

nique, DNS covert channels are taken into consideration.

This is motivated by the fact that, at the time of this writing,

DNS represents one of the most common protocol to control

systems and exfiltrate data covertly [11, 17, 43]. Neverthe-

less, DNS covert channel is a method that many organiza-

tions still fail to detect. In its simplest form, this technique

employs the DNS protocol to communicate directly with an

attacker’s external DNS server.

DNS is not designed to exchange an arbitrary amount of

data: therefore, messages are usually short and answers are

not correlated and may not be received in the same order as

the corresponding requests. Usually attackers avoid these

limitations with two approaches: (i) tunneling [39]: the at-

tacker establishes a bidirectional channel to send communi-

cations and instructions from an external server (command

and control, or C&C) to a compromised host; (ii) exfiltra-

tion [44]: the attacker executes data exfiltration from a com-

promised host towards a controlled external server, sending

information with minimal overhead and short and indepen-

dent requests.

Ahmed et al. [1] analyzed data extracted by a network

monitoring system, as several other works in state-of-the-

art [3, 35, 41]. The authors used only stateless attributes of

individual DNS queries, based on three main categories as

characters count (e.g., total count of characters in FQDN,

count of characters in subdomains, count of uppercase and

numerical characters), entropy on strings, and length of dis-

crete labels in the query (e.g., maximum label length and

average label length). The authors developed an anomaly

detection system based on Isolating Forest (iForest). The

approach does not involve any particular DNS record type,

the test phase is deployed solely with the exfiltration tool

DET and the training phase of the model is computationally

very expensive.

Nadler et al. [44] proposed an approach based on the

characteristics of the queries employed for data exchange

over DNS (e.g., longer than the average requests and re-

sponses, with encoded payload and a plethora of unique re-

quests) and on the use of single domains for exfiltration.

As in the previous case, the anomaly detection was based

on iForest. However, this approach considers only A and

AAAA records usage, the tested malware was simulated

with ad-hoc crafted queries in experimental environment;

iodine and dns2tcp were the only tunneling tools taken into

account.

Das et al. [15] underlined that DNS tunneling and mal-

ware exfiltration typically involve an exchange with the at-

tacker server of a part of payload encoded in a subdomain

portion of the DNS query or in the response packet. The

authors proposed two machine learning approaches, (i) a

logistic regression model and (ii) a k-means clustering, re-

spectively (i) for the exfiltration and (ii) for the tunneling

scenarios; these approaches are based on grammatical fea-

tures extracted from queries representative of an encoded

payload (e.g., entropy and number of upper cases, lower

cases, digits, and dashes characters). However, the test

phase lacks several attack scenarios; in particular, for DNS

tunneling, only the tunneling tool dnscat2 with the TXT

record was employed.

Liu et al. [39] analyzed the traffic of several open-source

DNS-tunneling tools based on the extraction of four kinds

of features, including time-interval features (e.g., mean

and variance of time-intervals between a request and a re-

sponse), request packet size, domain entropy, and distinc-

tion of record types (e.g., A, TXT, MX). The authors de-

veloped a binary supervised classification model based on

the description of traffic generated from different DNS-

tunneling tools (e.g., dnscat2, iodine, and dns2tcp). The

solution proposed by [39] consists of an offline component,

where the system trains the classifier, and an online com-

ponent, where the system identifies the tunnel traffic. Nev-

ertheless, during the training phase the DNS traffic is not

collected in a streaming fashion but using a specific dataset.

3 Network Monitoring Platform

The proposed covert channel detection algorithm has

been deployed in a network security monitoring platform
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called aramis (Aizoon Research for Advanced Malware

Identification System) able to automatically identify a wide

range of malware and attacks in near-real-time. This soft-

ware is bundled with dedicated hardware1, and its structure

can be summarized in four phases:

1. Collection: sensors are placed in various nodes of the

network. Each sensor gathers the data from its seg-

ment of the network, pre-analyzes them in real-time

and sends the results to a NoSQL database.

2. Enrichment: inside the NoSQL database, data is en-

riched with information coming from the Cloud Ser-

vice, which collects intelligence from various OSINT

sources and from internally managed sources.

3. Analysis: two kinds of analyses are executed on the

stored data: (i) advanced cybersec analytics to spot

and highlight specific attacks, among which the covert

channel detection module can be found, and (ii) a ma-

chine learning engine which compares the behavior of

each node with the usual one.

4. Visualization: the results are presented through cogni-

tive dashboards, crucial to highlight anomalies.

4 A Glimpse into DNS Covert Channels

In DNS covert channel technique the main challenge is

represented by performing the data exchange in an opti-

mized manner. To accomplish this goal, the structural and

grammatical characteristics of hostname and the capabili-

ties of various DNS record types are exploited [24]. Ac-

cording to the RFC 1034, the hostname can be up to 253

characters long and it is composed by labels each of which

can be up to 63 characters long; each character can be a let-

ter (upper case and lower case are both permitted), a num-

ber or a hyphen. To maximize the data exchanged - the

payload transmitted - in each DNS query, each label of the

subdomain contains a portion of the data, which have previ-

ously been encoded (e.g., using Base32, Base64, Base128

or Hexadecimal codecs) or encrypted (e.g., using RC4 en-

cryption algorithm). Furthermore, depending on the DNS

covert channel scenario, specific DNS record types are em-

ployed. We distinguish between two different cases: (i) ex-

filtration: information might be contained in a subdomain

of a domain and usually the communication is based on

A or AAAA DNS record types; (ii) tunneling: a bidirec-

tional channel between a compromised host and a server

controlled by the attacker is established in order to send

commands and obtain information about the host. The re-

quirement to maintain an open connection determines the

choice of certain DNS records – such as TXT (which is the

1E5-2690 2.9GHz x 2 (2 sockets x 16 cores) 16 x 8GB RAM, 1.1TB

HDD

most common choice), KEY, CNAME, MX, SRV, NULL,

and PRIVATE – that allow transmitting arbitrary portions

of text, in addition to the information exchanged over the

subdomain.

Another crucial point is represented by the information

stored in the stub revolver cache. In fact, normal DNS traffic

is usually reduced by the fact that a huge amount of DNS re-

sponses are cached within the stub resolver; instead, when a

covert channel takes place, the domain-specific traffic tends

to avoid cache by using non-repeating or short time-to-live

messages, resulting in not repeated and unique queries [24].

5 Detection of DNS Covert Channels

The proposed DNS covert channel detection technique is

based on the monitoring of large volumes of DNS requests

from a given IP address and on the analysis of the domain-

related linguistic features [7]. The main idea is to employ

machine learning to create models able to embed the behav-

ioral characteristics of network users’ traffic. An event is

considered anomalous when its results are distant from the

typical behavior modeled by the algorithm. Note that the

analysis relates different queries, and therefore the models

encompass network profiles tailored to the network users,

and not to the single query events. Furthermore, the pos-

sible risk of false positives generation related to the use of

machine learning is mitigated by the analysis of specific de-

scriptors of the DNS tunneling or exfiltration process built

out of the network data.

The general process of the resulting framework is shown

in Figure 1. The raw local recursive DNS server (RDNS)

data are collected, parsed and transformed into logs by the

network monitoring platform described in Sect. 3. Logs

are filtered as described in Sect. 5.1, both in the offline

and in the online component: the first one periodically2 ex-

tracts the features described in Sect. 5.2 from the historical

data collected during the period between two subsequent

runs and builds the related machine learning models. These

models are then used by the online component, which ex-

tracts the related features, detects anomalous queries in real

time, and further analyzes them in order to spot suspicious

queries, which will be the final outputs of the algorithm,

as described in Sect. 5.3. In the following, the three main

phases that compose the algorithm are summarized: (i) fil-

ters: filtering of input RDNS queries extracted by a network

analyzer, (ii) offline phase: assessment of the network under

analysis and creation of models able to describe the normal

behavior of the network, (iii) online phase: validation of

such models to spot potentially anomalous and/or malicious

activities occurring in the network.

2The period was set to six hours as a tradeoff between the need to ana-

lyze enough data to build reliable models and the need to avoid the abuse

of hardware resources.
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Figure 1. Diagram representing the main

steps of the detection algorithm: (i) filters, (ii)

offline phase, and (iii) online phase.

5.1 Filters

The input for both phases is represented by DNS queries

passively extracted by the network analyzer described in

Sect. 3. In order to consider the traffic that may actually

be associated with exfiltration or tunneling, the following

DNS query types are analyzed: TXT, CNAME, MX, SRV,

NULL, KEY, A, AAAA. The collected data are filtered as

described in Table 1: any query or group of queries match-

ing any of the filters is removed from the subsequent analy-

sis.

5.2 Offline Phase

The offline phase takes as input the historical data col-

lected from the network and representing a baseline of the

normal behavior. This phase includes:

1. Feature extraction: raw features are parsed in order to

extract the valuable information useful to describe the

problem at hand.

2. Model creation: a classifier is trained using the ex-

tracted features, with the aim of distinguishing be-

tween patterns performing with a normal behavior and

potentially suspicious patterns.

5.2.1 Feature Extraction

The features used for training the classifier are the follow-

ing.

Table 1. Filters Description
Type Description

White list domains

Domains known to be trusted, e.g., the top 10000

domains in the world provided by Alexa [4] and the

web URLs of the 500 world biggest companies

provided by Forbes [25].

Response code

Only communications which occurred with no error

(associated with response code=0) are kept and the

analysis of retransmissions due to network errors is

avoided.

Content Delivery

Networks

These represent an important source of false

positives for DNS-based detection algorithms [40].

Overloaded DNS
DNS queries are often overloaded so to provide

anti-spam or anti-malware techniques.

Local and

corporate domains

These domains represent a high percentage of the

legitimate DNS traffic in a corporate network.

IP addresses in the

subdomain

Domains containing an IP address in the subdomains

are typically associated with answers to PTR

requests.

Longest label with

less than 6

characters

We assume that the longest labels used to transfer a

payload necessitate of a minimum number of

characters.

Less than 3

different

hostnames per

domain

After grouping queries with the same domain, we

select domains associated with at least 3 distinct

hostnames, in order to discard the ones which cannot

be involved in an exfiltration process (due to the

minimum number of queries involved in the process).

Duplicated queries
Duplicated queries are mainly related with

retransmissions, quite common in complex networks.

Uppercase Characters Ratio. Ratio between the number

of uppercase characters and the total number of characters

in the subdomain. A large fraction of uppercase characters

may be associated with a payload encoded in the subdomain

using Base64 encoding, which is widely employed in DNS

covert channels.

Digits Ratio. Ratio between the number of digits and the

total number of characters in the subdomain. A large frac-

tion of digits may indicate a payload encoded or encrypted

into the subdomain.

Total Label Ratio. Total number of characters of the

hostname divided by 253 (maximum number of characters

allowed for a hostname according to RFC 1034). In a wide

variety of DNS covert channel scenarios, a payload is en-

coded or encrypted in the subdomain, aiming at transferring

the maximum possible amount of data to conduct the attack.

As a result, the obtained queries possess a larger number of

characters compared with legitimate queries.

Per Label Ratio. Number of characters of the longest la-

bel of the subdomain divided by 63 (maximum number of

characters allowed for each label in the hostname accord-

ing to RFC 1034). The encoded or encrypted payload might

contain several types of information (e.g., bot-id, campaign-

id, command), in addition to the data exchanged. As a re-

sult, one or more labels, used to exchange data, may contain

a large fraction of the characters in the subdomain, while in

ordinary traffic the lengths of the labels are typically com-

parable, resulting in a moderate length for the longest label.
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5.2.2 Model Creation

A one-class Support Vector Machine (SVM) [51] classifier

with radial basis function kernel has been used to create the

models out of the feature space described in the previous

subsection. In fact, even though the original formulation

of SVMs is related to the resolution of supervised tasks,

the one-class SVM – which has been shown to be an ap-

propriate choice in the context of anomaly detection [54] –

is defined as a boundary-based anomaly detection method,

which modifies the original SVM approach by extending it

in order to deal with unsupervised data. In our context, this

means that the proposed approach is able to train the classi-

fier by using only the normal network traffic, preserving the

malicious samples for the test of the algorithm. In particu-

lar, this implies that the proposed method is more likely to

identify a new variant of a DNS covert channel, as it does

not require a specific training for that variant.

Like traditional SVMs, one-class SVMs can also be

extended to non-linearly transformed spaces using the so

called kernel trick, which amounts to define an appropriate

scalar product in the feature space. In the present work a

radial basis function kernel has been used for the reasons

described in [36], i.e., the scalar product between two fea-

tures vectors ~x and ~x′ has been defined as in Eq. 1

K(~x, ~x′) = exp(−γ||~x− ~x′||2), (1)

where γ is a hyper-parameter which defines the width of the

Gaussian distribution. The objective function maximized by

the algorithm is the so-called soft margin, which is charac-

terized by ν, another hyper-parameter associated with the

penalty related to wrong labelling [51].

The model creation phase (see, for example, [45] for an

introduction on the topic) is repeated every six hours: each

time the collected historical data are randomly split in two

subsets. The first subset (training set) contains 75% of the

data and it is used to train the model over the grid (γ, ν) ∈
{10−3, 10−2, · · · , 102}×{10−3, 10−2, · · · , 102}. The latter

subset (validation set) contains the remaining 25% of the

data and it is used to select the best pair (γ, ν),3 which is

used to recreate the model on the whole data set (training +
validation).

5.3 Online Phase

The online phase analyzes real time data and involves the

following steps:

1. Feature extraction: the same features described in

Sect. 5.2 are extracted.

3Although in principle a different value for the pair (γ, ν) is allowed in

every model creation phase, the validation procedure has selected (γ, ν) =
(0.1, 0.1) for the whole duration of our experiment.

2. Classification: the classifier trained in the offline phase

is applied to online data in order to check whether they

are consistent with the normal behavior; if they do not

conform, the patterns are assessed with the subsequent

module.

3. Advanced analytics: an algorithm combines data min-

ing techniques and cyber security knowledge to per-

form an in-depth analysis of the queries considered

suspicious in the previous step. In the remainder of

the section, we provide a description of this module.

5.3.1 Advanced analytics

The following anomaly indicators of possible covert chan-

nel activity are developed.

Number of unique requests from an IP address to a do-

main. Avoiding the stub resolver cache during an attack

may result in not-repeated requests to a domain. Therefore,

a large number of unique requests from an IP address to a

domain may indicate a DNS covert channel. An indicator ir
is defined as the frequency with which the number of unique

requests from an IP address to a domain falls on the tails of

its distribution (90th percentile).

Number of unique hostnames per domain. Related to the

previous point, also a large number of unique hostnames per

domain might indicate a DNS covert channel. An indicator

ih is defined as the frequency with which the number of

subdomains per domain falls on the tails of its distribution

(90th percentile).

Entropy. The entropy of a subdomain considered as a

sequence of characters is related to its randomness. Since

attackers compress the data to be sent as a payload via en-

coding or encryption, a large entropy may be a sign of an

encoded or encrypted payload. An indicator ie is defined as

the maximum among the entropy of the whole subdomain

and that of its longest label.

Distribution of frequencies of mono-grams and bi-

grams. A distribution of subdomain characters, which is

distant from the distribution of characters of real languages,

may represent another indicator of randomness [48], re-

lated to an encoded or encrypted payload. For each con-

sidered language (English and Italian), ilang,mono
d (ilang,bid )

is defined as the maximum among the Jaro-Winkler dis-

tance [59] of the mono-grams (bi-grams) distribution of the

subdomain and that of its longest label from the correspond-

ing distribution of the language. Finally, we evaluate the

average id = (ieng,mono
d + ieng,bid + iita,mono

d + iita,bid )/4.

Anomaly Index. Once the previously described indica-

tors tailored to the DNS protocol are extracted, an anomaly

index A is built by averaging them: A = (ir+ih+ie+id)/4.

For each machine source, the index is rescaled by taking

into account the fraction between the number ns of suspi-

cious queries and the total number ntot of DNS queries pro-
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Table 2. Malware Description

Name Category APT Codec DNS rtype Domain Detection A

Pisloader Trojan RAT Wekby Base32 TXT local.it-desktop.com 96% 100%

ISMDoor Trojan RAT GreenBug Base64 AAAA basnevs.com 91% 100%

Denis Trojan Backdoor OceanLotus Base64 NULL z.teriava.com 100% 100%

Carbanak Trojan Backdoor Fin7 Custom TXT en.google4-ssl.com 100% 100%

Cobalt Strike Commercial Tool CopyKittens Custom TXT update.cisc0.net 100% 100%

Bondupdater Trojan Powershell OILRig Custom A, TXT withyourface.com 100% 100%

UDPoS PoS Malware - RC4 A ns.service-logmeln.network 100% 100%

DNSpionage Trojan RAT - Base32 A microsoftonedrive.org 100% 100%

duced, according to A → min(1,A + b + c log(ns/ntot)),
where (b, c) = (0.33, 0.067) have been set with a pre-

liminary una tantum validation procedure. The detection

of covert channels has thus been reduced to a very sim-

ple one-dimension classification problem: only queries with

A > Ath are labeled as suspicious, where the optimal

threshold (Ath = 0.25) has been found with the una tan-

tum validation procedure. Note that A may be considered

as an indicator of anomaly from a behavioral point of view.

Table 3. Network Description
15-Days

Total

1-Hour

Average

N. of Machines 360 -

N. of Client Machines 346 -

N. of Connections 43 M 287 k

N. of Resolved DNS Queries 4 M 25 k

N. of Unique Resolved DNS Queries 119 k 791

6 Experimental Evaluation

The proposed DNS covert channel detection algorithm

was evaluated over a real company network: in particular,

the test set comprises 15 days of ordinary traffic – described

in Table 3 – with the injection of traffic which covers the

most relevant exfiltration and tunneling attacks. Note that

the test set has been only used to test the performance of the

algorithm and not to modify the algorithm or the parame-

ters.

Two different experimental designs have been selected

for the test of the algorithm, related with both exfiltration

and tunneling attacks: a malware scenario and a tool sce-

nario, that correspond to two different modes of injection

described in Sect. 6.1 and 6.2 respectively. Both scenarios

have been recreated by injecting the malicious traffic into

the ordinary traffic of a real network, described in Table 3.

6.1 Malware Scenario

The traffic related to malware attacks was injected by

employing 8 pcaps – collected from the public sand-

boxes [31, 33, 49] – associated with 7 different APTs [14,

23, 29, 42, 53, 57, 58] and 1 PoS malware campaign [56].

Table 2 provides a brief description of each malware with

the following information:

• The malware name;

• The category of the malware;

• The name of the APT group related to the malware;

• The codec employed to encode the payload into the

DNS requests;

• The list of DNS record types used by the malware;

• The domain present in each pcap, which is a known

IoC associated to the malware;

• The percentage of detected occurrences, i.e., the num-

ber of detected queries divided by the total number of

queries produced by the malware;

• The value of the anomaly index A, defined in Sect. 5.

6.2 Tool Scenario

The traffic related to attacks performed by tools was in-

jected in the network described in Table 3 by using 5 of the

most popular DNS-tunneling tools [16, 18, 19, 20, 32, 61]

and 1 DNS-file-transfer tool [21]. This choice is motivated

by the state-of-the-art in the exploitation of DNS protocol

for covert channel, assessed by the presence of these tools

inside some Linux distributions for penetration testing, the

supported DNS record types and the state of maintenance of

the tools. Table 4 provides a brief description of each tool

with the following information:

• The name of the tool;

• The list of compatible platforms;
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Table 4. Tools Description

Name Platform Linux PenTest Distro Codec DNS rtype Detection A

dnscat2 Linux, Windows - Hexadecimal

TXT 100% 100%

MX 100% 100%

CNAME 100% 100%

dns2tcp Linux, Windows Kali, BlackArch Base64
TXT 100% 100%

KEY 100% 100%

iodine
Linux, Windows,

Mac OS X
Kali, BlackArch, BackBox Base128

NULL 70.08% 100%

TXT 87.02% 100%

SRV 85.03% 100%

MX 88.11% 100%

CNAME 77.73% 100%

A 86.67% 100%

DNScapy Linux, Mac OS X - Base64

CNAME 13.73% 69%

TXT 12.61% 71%

TXT, CNAME 14.75% 76%

dnsfilexfer
Linux, Windows,

Mac OS X
Kali, BlackArch Hexadecimal A 100% 100%

Your-Freedom
Linux, Windows,

Mac OS X
- Base64 NULL 100% 100%

• The Linux penetration testing distribution where the

tool is pre-installed;

• The codec employed to encode the payload into the

DNS requests;

• The list of DNS record types supported by the tool;

• The percentage of detected occurrences, i.e., the num-

ber of detected queries divided by the total number of

queries produced by the malware;

• The value of the anomaly index A, defined in Sect. 5.

All the tools considered in this paper require two differ-

ent machines: (i) a host which represents a server hold by

an attacker and (ii) another host which represents either an

unaware infected client or a client controlled by an insider

threat. Both components have been recreated in an appro-

priate way in each experiment (see Table 4).

1. The server component was simulated, whenever possi-

ble, with an appropriate version of a Linux penetration

testing distribution such as Kali Linux [34], BlackArch

Linux [8], and BackBox [6]. In the remaining cases an

ad hoc Linux installation was employed;

2. The client component was simulated with a Windows

or Linux client, with an appropriate version of the op-

erative system (for reasons of compatibility with in-

stalled tools).

All tools employed in the experimental evaluation are

open-source except Your-Freedom. A brief description of

the tools considered follows.

iodine [32] is one of the most popular DNS-tunneling

tools [9, 10, 30, 39, 44] and is pre-installed in all Linux pen-

etration testing distributions considered in this paper. Io-

dine encapsulates an IPv4 packet into the payloads of DNS

packets and needs a TUN/TAP device to operate. It uses

the NULL record type by default, but can support other

record types such as PRIVATE, TXT, SRV, MX, CNAME

and A (returning CNAME). Upstream data is GZIP com-

pressed and encoded; the supported encoding option in-

cludes Base32, Base64, Base64URL and Base128. If

NULL or PRIVATE record types are used, downstream data

is transmitted as GZIP compressed raw IP packet bytes; if

other record types are used, it is GZIP compressed and en-

coded like upstream data.

dnscat2 [20, 39, 48] is designed to create an encrypted

command-and-control (C&C) channel over the DNS pro-

tocol. It uses the TXT, CNAME and MX record types by

default, but it supports also A and AAAA record types if

data are only sent from client to server. All data in both

directions is transported using hexadecimal encoding.

dns2tcp [9, 10, 18, 39] relays TCP connection over DNS,

and is pre-installed in Kali Linux and in BlackArch Linux.

Data encapsulation already takes place at the TCP level,

so no separate driver (TUN/TAP) is required. Dns2tcp re-

quires the list of available resources (e.g., ssh, smpt, pop3)

on server configuration, i.e., the resources that the client can

request to access. It uses the TXT record type by default,

but it can also support the KEY record type. All data in both

directions is transported using Base64 encoding.

DNScapy [10, 19] creates a SSH tunnel through DNS
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packets. The idea of encapsulating SSH in DNS comes

from OzymanDNS [46]. DNScapy supports CNAME and

TXT record types but the default mode is RAND, which

randomly employs both CNAME and TXT. All data in both

directions is transported using Base64 encoding.

dnsfilexfer [21] exfiltrates files via DNS lookup and is

pre-installed in Kali Linux and in BlackArch Linux. Dns-

filexfer supports only the A record type. All data is trans-

ported using hexadecimal encoding.

Your-Freedom [5, 37, 61] is a tool based on a service

available either in a paid version or in a free version, with

some limitations. Only the client component can be down-

loaded and it requires either OpenVPN or a software that

acts as a socksifier. An appropriate online server, accessible

by the client component, has to be chosen during the setup

of the client. Your-Freedom supports many DNS record

types such as NULL, WKS, TXT, CNAME and MX. All

data in both directions is transported using Base64 encod-

ing.

6.3 Experimental Results

The DNS covert channel detection algorithm described

in Sect. 5 has been evaluated over a 15-day-long experimen-

tal session performed in a test network (described in Table

3) with the injection of traffic related to several malware and

tool attacks. Tables 2 and 4 (described in Sects. 6.1 and 6.2

respectively) clearly show that the proposed method suc-

cessfully detected all the covert channel attacks with high

anomaly and detected occurrence indicators. In particular,

all tools described in Table 4 have been detected with high

detection rate with the exception of DNScapy. In this con-

text, the main difference between DNScapy and the other

variants is the fact that the former produces many state

queries to maintain the established connection alive; these

queries are shorter and are not identified by the algorithm,

which focuses on exfiltration queries. Anyway, it is impor-

tant to note that the proposed method is indeed able to de-

tect a covert channel attack via DNScapy, as the exfiltration

queries are correctly detected. The main purpose of the al-

gorithm is therefore fully reached despite the fact that the

detection rate on the queries is low for this particular tool.

In Table 5 we summarize the performance of the algo-

rithm via the confusion matrix, which contains:

• True Negatives (TN ): The number of unique legitimate

queries that are correctly labeled as legitimate.

• False Negatives (FN ): the number of unique queries

related with malicious covert channels queries that are

incorrectly labeled as legitimate.

• False Positives (FP ): the number of unique legitimate

queries that are incorrectly labeled as covert channels;

many of them are related with particular types of ad-

vertising which produce queries that look very similar

to covert channels4.

• True Positives (TP ): the number of unique queries re-

lated with malicious covert channels that are correctly

detected.

Table 5. Results (Confusion Matrix)
Actual Class

Normal Malicious

Predicted

Class

Normal TN = 116649 FN = 490

Malicious FP = 2033 TP = 18174

A remarkable result is the low rate of false negatives: this

determines indeed a 97% recall, also known as detection

rate, R = TP /(TP + FN ). In particular, false negatives

are mainly due to the evasion of the state queries related to

the DNScapy tool – as previously explained in this Section

– while false positives are mostly related with advertising

queries.

Another metric commonly used to evaluate binary clas-

sifiers is the F-score. It is defined as F = 2P R/(P + R)
(where P = TP /(TP + FP )), and it is a more reliable

indicator for problems in which the classes are highly un-

balanced, as in the present case (the number of legitimate

queries in the test set is much larger than the number of

covert channel related queries). The value obtained in the

experiments is F = 94%. Even though an exact compari-

son is not possible due to the use of different datasets, we

can note that we obtained an F-score almost as large as the

one in the work of [39], despite some crucial differences:

(i) the method proposed in [39] employs a supervised clas-

sifier, i.e., a binary classifier is trained using both legitimate

and malicious queries, while our approach trains the clas-

sifier only with the normal network traffic; this means that

our approach can identity a new variant of a DNS covert

channel without a specific training for that variant; (ii) the

benign parts of the training and test sets in [39] only con-

tain domains in the Alexa top 1-million list [4], while our

corresponding sets contain all the traffic collected from a

real network. We can therefore conclude that the proposed

method brings a relevant contribution in the state-of-the-art

of DNS covert channel detection.

7 Conclusions

In this paper, we proposed a DNS covert channel detec-

tion method based on the analysis of the DNS traffic of a

4Here are some examples of false positive: (i) ”0w57c49k-

db0dd2cc45455ae425c83e3b8ed8a67a14261606-am1.d.aa.online-

metrix.net”, (ii) ”5b584d886b0f49f795209d5763d8c078.events.ubembed.com”,

(iii) ”y2tyfol9hiuw5hzwe2hnusbzm1qz51545315830.nuid.imrworldwide.com”.
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single network; the analysis requires aramis security moni-

toring system. The proposed framework employs a machine

learning module which provides a behavioral analysis and

specific anomaly indicators able to encompass the charac-

teristics of a covert channel. The main contribution of this

approach is the ability to provide network profiles tailored

to the network users, and not to the single query events,

hence allowing spotting possible deviations from the nor-

mal baseline. Moreover, models are created in an unsuper-

vised mode, thus enabling the identification of zero-days at-

tacks and avoiding the requirement of signatures or heuris-

tics for new variants.

The proposed solution has been evaluated over a test net-

work, with the injection of 8 pcaps associated with 7 differ-

ent APTs and 1 PoS malware campaign and the network

traffic of 5 DNS-tunneling tools and 1 DNS-file-transfer

tool; all the malicious variants were detected, while pro-

ducing a low false-positive rate during the same period.

Another important contribution of the proposed method is

therefore the capability to detect covert channels generated

with a wider variety of malware and tools, compared with

the state-of-the-art.

As a future development, we plan to extend the analy-

sis to other protocols, (e.g., HTTP and HTTPS), and to re-

fine the linguistic anomaly indicators by adding more lan-

guages or custom dictionaries. Moreover, we intend to

broaden the behavioral approach in order to create another

level of profiles tailored to groups of network users sharing

common behavioral characteristics (e.g., same department,

same job).
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What is BOTNETS: Architectures, Countermeasures and Challenges?  

The book “Botnets: Architectures, Countermeasures and Challenges”, published by CRC Press and 

edited by G. Kambourakis, M. Anagnostopoulos, W. Meng and P. Zhou provides solid, state-of-the-

art contributions from both scientists and practitioners working on botnet detection and analysis, 

including botnet economics. It presents original theoretical and empirical chapters dealing with both 

offensive and defensive aspects in this field. Chapters address fundamental theory, current trends 

and techniques for evading detection, as well as practical experiences concerning detection and 

defensive strategies for the botnet ecosystem, and include surveys, simulations, practical results, and 

case studies. 

 

Our contribution        

Our team contributed to the book with an article titled “Domain 

Generation Algorithm Detection Techniques through Network 

Analysis and Machine Learning”. In this article, we focus on supervised 

or signature-based approaches and explained their possible limitations. We 

then discuss the unsupervised techniques, usually retrieved by collecting the 

DNS traffic of a single network. Eventually, an effective DGA detection 

algorithm based on a single network monitoring is presented. The proposed 

approach consists of two steps: the first step involves the detection of a bot 

looking for the C&C and thus querying many automatically generated 

domains. The second phase consists on the analysis of the resolved DNS 

requests in the same time interval. The linguistic and semantic features of the 

collected unresolved and resolved domains are then extracted in order to 

cluster them and identify the specific bot. Finally, clusters are analyzed in order 
to reduce false positives. 
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During the last years, the structure and organization of botnets have become 

more and more challenging. In this context, the role of domain generation 

algorithms (DGAs) has been crucial to improve the resiliency of communication 

between bots and command and control (C&C) infrastructure. In fact, these 

techniques allow botnet controllers to become evasive and potentially avoid 

detection. In order to efficiently detect these kinds of threats, specific methods 

have to be implemented. In this context, a number of different approaches to 

DGA detection have been proposed in state-of-the-art, but DNS-based analysis 

has resulted to be one of the most appropriate to obtain good results even in near 

real-time analysis conditions, since it only requires the processing of a small part 

of the network traffic. For this reason, many recent works focused on automati- 

cally recognizing DGA within DNS traffic, whenever occurring. 

In this chapter, we will first focus on supervised or signature-based approaches 

and explain their possible limitations; then, we will discuss the unsupervised 

techniques, usually retrieved by collecting the DNS traffic of a single network. 

Eventually, an effective DGA detection algorithm based on a single network 

monitoring will be presented. The proposed approach consists of two steps: the 

first step involves the detection of a bot looking for the C&C and thus querying 

many automatically generated domains. The second phase consists on the analysis 

of the resolved DNS requests in the same time interval. The linguistic and 

semantic features of the collected unresolved and resolved domains are then 

extracted in order to cluster them and identify the specific bot. Finally, clusters 

are analyzed in order to reduce false positives. 

 
5.1 Introduction 

Cybercrime constitutes one of the most serious threats to the current society, with 

huge consequences on both companies or organizations and single individuals 
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[1–5]. During the last years, a key role in cybercrime has been played by botnets 

[6–8], defined as networks of compromised computers (popularly referred to as 

zombies or bots), which are controlled by a remote attacker (popularly referred to 

as a bot herder) through specific C&C channels. Among the various threats, 

DGA-based attacks have recently become a crucial issue to guarantee the success 

of a botnet, since they allow the improvement of the resiliency of communication 

between bots and C&C infrastructure. 

In fact, the strength of the botnet resides in its highly distributed and highly 

changeable network, in order to make the tracing and the recovery of all the 

infected components very difficult, and therefore allowing for the spreading of a 

wide range of malicious and illegal activities such as ransomwares, exploit kits, 

or banking trojans [9–13]. 

In botnets, information can be exchanged by the bot herder and bots using 

different protocols; for example, peer-to-peer (P2P)-based botnets possess a more 

robust C&C structure that is difficult to detect and take down, but they are 

typically harder to implement and maintain. Many attackers try to combine the 

simplicity of centralized C&Cs with the robustness of P2P-based structures by 

employing HTTP botnets that locate their C&C servers through the dynamic 

generation of domains using a DGA, also known as domain flux. 

This  technique  is   based  on   the  following  steps:   first,  each   bot  uses  a 

precalculated seed value known to the bot herder (e.g., the current date) to 

automatically generate hundreds or thousands of pseudo-random domain names 

that represent candidate C&C domains. The bot then sends DNS queries until it 

connects to the IP address associated to a resolved domain. The key advantage of 

this strategy is that even though one or more C&C domain names or IP addresses 

are identified and recovered, the bots will query the next set of automatically 

generated domains and they will eventually get the IP address of a relocated C&C 

server. In order to obtain a good level of flexibility and a resilient communication 

channel between bots and C&C, DGAs represent a widely employed technique 

in botnet control [8,14–20]. Therefore, DGA detection is a task of crucial 

importance in cyber security. 

In this chapter, we will provide an exhaustive overview of state-of-the-art DGA 

detection methods. Among the number of different approaches, DNS-based 

analysis is one of the most appropriate to obtain quick responses, since it does 

not need file dumps and requires only the analysis of a small part of the network 

traffic (in particular, it can ignore packets’ payloads). 

Elaborately, there are three main reasons to detect DGA botnets using DNS 

traces. First, DNS queries are necessary to look up the IP addresses of C&C 

domains. Second, focusing on a relatively small amount of traffic helps to 

improve performance, making it possible to detect bots in real time. Third, 

since bots detection is possible by using only DNS traces when C&C 
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domains are searched, it might be possible to stop attacks even before they 

happen. 

For these reasons, many recent works focused on automatically recognizing 

DGA within DNS traffic, whenever occurring. Many efforts have been made to 

employ supervised or signature-based approaches [21], but these have obtained 

limited results in the highly dynamic DGA environment. Therefore, some works 

have applied unsupervised techniques on DNS traffic data provided by some 

internet service providers [22–25] or retrieved by collecting the DNS traffic of a 

single network [17,19,26]. 

After reporting the overview of DNS-based DGAs detection techniques, we 

will report on an effective DGA detection algorithm that analyzes the DNS traffic 

of a single network in near real time. In this context, the ability to detect an attack 

in near real time is crucial, as it allows for a quick reaction, and it is the only way 

to prevent a potentially severe damage to the company that is working inside the 

network under attack. 

The remainder of the chapter is organized as follows. After the main concepts 

related to DGA are presented in Sections 5.2, Section 5.3 provides an overview of 

DGA detection techniques with supervised approaches, while Section 5.4 

describes the unsupervised ones. Section 5.5 introduces the monitoring platform 

that contains the DGA detection method, which is the focus of this chapter and 

which is described thoroughly with the related experimental results. Finally, 

conclusions are provided in Section 5.6. 

 
5.2 Background 

DGA, also defined as domain flux, is a technique often employed by attackers to hide 

malicious  servers   and  avoid  blacklists.   With  this  technique,   each bot,  using 

a precalculated seed value known to the bot herder (e.g., the current date), automati- 

cally generates hundreds or thousands of pseudo-random domain names that represent 

candidate C&C domains. At this point, the bot starts sending DNS queries until it 

connects to the IP address associated to a resolved domain. The main advantage 

provided by this strategy is that even if one or more C&C domain names or IP 

addresses are identified and recovered, the bots will query the next set of automatically 

generated domains and it will eventually get the IP address of a relocated C&C server. 

The technique that instead represents the dual approach employed by attackers 

is defined as IP flux or fast flux. In fact, a common practice for bot herders is to 

organize their bots in fast flux service networks (FFSNs): some bots, chosen from 

a pool of controlled machines, are used as front-end proxies that relay data 

between a (possibly unaware) user and a protected hidden server. The technique 

behind these structures is the fast flux, i.e., the rapid and repeated changing of an 

internet host and/or name server resource record in a DNS zone, resulting in 
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rapid changes of the IP addresses to which the domain resolves. FFSNs make the 

tracing and the recovery of all the infected components extremely difficult. 

Domains generated by an algorithm are usually pseudo-random domains, 

sharing at least some common linguistic attributes. It is known however [17] that 

some modern DGAs employ English dictionary words with little modifica- tions. 

Therefore, it is usually possible to find common patterns able to character- ize a 

specific C&C connection and define the behavior of a particular bot. 

More specifically, different types of domain layouts can be distinguished: 

 

■ Alphabetic or alphanumeric: the characters of the domain are pseudo- 

random characters extracted from a distribution respectively not containing 

or containing numbers. 

■ Dictionary-based: the characters of the domain build words extracted from 

a dictionary. 

In both cases, domains generated by the algorithm may have fixed or variable length. 

The following botnets, studied by state-of-the-art works, employ DGAs in 

order to avoid detection. Some examples are: 

 

■ PushDO [27], also known as Pandex or Cutwail, that employs an alpha- 

betic layout of fixed length. 

■ Kraken [28], also known as Bobax or Oderoor, which employs an alpha- 

betic layout of variable length. 

■ Necurs [29] that employs an alphabetic layout of variable length.All these 

variants will be taken into consideration in the experimental evaluation section. 

 

5.3 DGA Detection with Supervised Approaches 

Botnets  usually  rely  on  DNS  to  support  an  agile  connection   to   the C&C. 

A simple yet effective way to disrupt them is to blacklist malicious domains or to 

add a filtering rule in a firewall or network intrusion detection system. 

In an attempt to evade domain name blacklisting, attackers may employ DNS 

agility. A common example involves the generation of thousands of randomly 

generated domains with dozens of A records or NS records, or domains used for only 

a few hours of a botnet’s lifetime. Ref. [21] proposes Notos to passively analyze DNS 

query data inside a network. This system is based on the assumption that a malicious 

use of DNS has unique characteristics that can be distinguished from legitimate DNS 

services. Notos hence builds models of known legitimate domains and malicious 

domains. In particular, historical DNS information collected passively from multiple 

DNS resolvers is collected to build a model of legitimate resources, while information 

about malicious domain names and IP addresses is obtained from sources such as 
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spam-traps, honeynets, and malware analysis services. Models are built based on 

statistical features related to information such as geolocalization, domains structure, 

and number of connections to malicious sources. 

After building the models, the system employs them to compute a reputation score 

for a new domain indicative of whether the domain is malicious or legitimate. 

The authors evaluated Notos in a large network with DNS traffic from 1.4 million 

users: the results show that it is able to detect malicious domains with 96.8% of 

accuracy and low false positive rate (0.38%) and can identify these domains weeks or 

even months before they appear in public blacklists. 

Even though the results are quite satisfying, one of the main limitations of this 

system is that it is unable to assign reputation scores for domain names with very 

little historic (passive DNS) information. Therefore, in this situation it might not 

be trivial to collect data to build an effective supervised classifier. For example, if an 

attacker always buys new domain names and new address spaces, Notos will not be 

able to accurately assign a reputation score to the new domains. While in the IPv4 

space this is very unlikely to happen due to the impending exhaustion of the 

available address space, it may represent a huge issue for IPv6. 

BotCensor [30] is a framework that employs a two-stage anomaly detection to 

determine if a host is infected with  certain DGA malware. In the first stage,     a 

Markov model is used to identify malicious domains, and in the second stage, 

the potentially malicious hosts are re-examined with novelty detection algorithms. 

To validate BotCensor, the authors conducted a study using both several public 

source data and real DNS traces. Even though the obtained results are quite 

satisfying, this system still possesses some limitations. In fact, if an attacker knows 

the rationale of the first-stage anomaly detection of BotCensor, he or she may use 

domains that are similar to legitimate ones as DNS mapping objects. 

Due to the limitations of the supervised approach, in the next section we will 

consider unsupervised DNS based approaches, which do not need labeled data. 

 
5.4 DGA Detection with Unsupervised Approaches 

In the following paragraphs, we propose an overview of state-of-the-art unsuper- 

vised approaches, i.e., approaches that do not require prior knowledge of the 

DGAs or reverse engineering of malware samples. 

 
5.4.1 A Statistical Approach for DGA Detection 

In the work proposed by [24], the distribution of alphanumeric characters as well as 

bigrams in all the domains that are mapped to the same set of IP addresses is taken 

into consideration. The authors in fact develop metrics borrowing techniques from 

signal detection theory and statistical learning, which can detect algorithmically 
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generated domain names that may be generated via plenty of techniques, e.g., 

pseudo-random string generation algorithms as well as dictionary-based generators. 

Specifically, they propose the following metrics to quickly differentiate a set of 

legitimate domain names from malicious ones: information entropy of the distribu- 

tion of alphanumerics (unigrams and bigrams) within a group of domains; Jaccard 

index to compare the set of bigrams between a malicious domain name with good 

domains; Edit-distance, which measures the number of character changes needed to 

convert one domain name into another. 

Their methodology is based on the fact that current botnets do not use well- 

formed and pronounceable language words since the likelihood that such a word 

is already registered at a domain registrar is very high. In turn, this means that 

algorithmically generated domain names can be expected to exhibit characteristics 

vastly different from legitimate domain names. 

 
5.4.2 Exposure 

Among unsupervised approaches, EXPOSURE [22] employs a large-scale, passive 

DNS analysis technique to detect domains that are involved in malicious activity. 

Fifteen features are extracted from the DNS traffic in order to characterize 

different properties of DNS names and the ways they are queried. 

The experiments were performed on a large real-world data set consisting of   100 

billion DNS requests, and a real-life deployment for two weeks has shown that the 

approach is scalable and able to automatically identify unknown malicious domains that 

are misused in a variety of malicious activities, e.g., botnet C&C, spamming, and 

phishing. 

Being able to passively monitor real-time DNS traffic allows to identify malware 

domains that have not yet been revealed by pre-compiled blacklists. Anyway, the 

system still possesses some limitations: for example, to evade EXPOSURE, an attacker 

could try to avoid the specific features and behavior looked for inside the DNS traffic. 

Moreover, the detection rate also depends on the training set. Even if the system is 

not trained on unknown families of malicious domains, the more malicious domains 

are fed to the system, the more comprehensive the approach can become. 

 
5.4.3 Phoenix 

Phoenix [23] is a system that, in addition to detecting DGA- and non-DGA- 

generated domains using a combination of string and IP-based features, characterizes 

the DGAs behind them, by finding groups of DGAs that are representative of the 

respective botnets. As a result, Phoenix can associate previously unknown DGA to 

these groups, and produce novel knowledge about the evolving behavior of each 

tracked botnet. Phoenix framework is hence based on the following phases: collection 
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of domains, characterization of the generation algorithms, isolation of groups of 

domains representing the respective botnets, and production of novel knowledge 

about the evolving behavior of each tracked botnet. 

Phoenix has been evaluated on 1,153,516 domains, including DGA-generated 

domains from well-known botnets: it correctly distinguished DGA- versus non- 

DGA-generated domains in 94.8% of the cases, and characterized families of 

domains that belonged to distinct DGAs, helping in gathering intelligence on 

suspicious domains to identify the correct botnet. 

 
5.4.4 NetFlow 

The technique to detect hosts infected by DGA-malware proposed by [17] is 

based on NetFlow, defined as an aggregation of all packets sent from one source 

IP and port pair to one destination IP and port pair, over the same protocol. DGA-

based malware is identified by means of a statistical approach based on the 

calculation of the ratio of DNS requests and visited IPs for every host in the local 

network. The system identifies deviations from this model as potential DGA- 

performing malware. The approach is based on the fact that malware usually tries 

to resolve many domains during a small time interval without a corresponding 

amount of newly visited IPs. Large numbers of domain trials are expected because 

they lower the chance of generating already existing or blocked domains. 

Authors show that this method is able to detect different popular bots belonging to 

different malware families in a real network of 50,000 users with high accuracy. 

 
5.4.5 BotDigger 

BotDigger [19] is a system able to detect DGA-based bots using DNS traffic ofa single 

network without a priori knowledge of the specific DGA, by employing the extraction 

of a chain of evidence, including quantity, temporal and linguistic evidence. 

In particular, quantity evidence means that the number of suspicious second-level 

domains (2LDs) queried by bots is much more than the one of legitimate hosts. Two 

temporal evidences are used: (1) the number of suspicious 2LDs queried by a bot 

suddenly increases when it starts to look for the registered C&C domain; (2) once the 

bot hits the registered C&C domain, the number of queried suspicious 2LDs 

decreases. The basis of linguistic evidence relates to the fact that the DGA NXDo- 

mains (i.e., non-existent domains) and C&C domains queried by a bot are generated 

by the same algorithm, thus they share similar linguistic attributes. 

Authors evaluated BotDigger on two famous botnets (Kraken and Conficker) 

and showed that BotDigger was able to detect all the Kraken bots and 99.8% of 

Conficker bots. Other DNS traces were used to evaluate false positives obtaining 

false positive rates between 0.05% and 0.39%. 
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One limitation of this framework resides in the fact that BotDigger may not detect 

DGA if its time window is too large. Anyway, this has the advantage to force bots to 

take more time to contact the C&C domains in order not to be discovered. Moreover, 

the quantity evidence requires that the number of NXDomains queried by a bot is 

comparable more than legitimate hosts. As a result, BotDigger will fail only if the bot is 

“lucky” enough to query just a very small amount of domains before hitting the C&C. 

 
5.5 An Efficient Near Real-Time DGA Approach 

Based on a Single Network Monitoring 

The proposed DGA detection algorithm has been deployed in aramis (Aizoon 

Research for Advanced Malware Identification System) [31], a network security 

monitoring platform able to automatically identify a wide range of malware and 

attacks in near real time, through near real-time monitoring of a single network. 

aramis’s structure can be summarized in four phases: 

 

1. Collection: sensors placed in various nodes of the monitored network gather 

data from its different segments, pre-analyze them in real time, and send the 

results to a NoSQL database. 

2. Enrichment: inside the NoSQL database, data is enriched with information 

coming from the aramis Cloud Service, which collects intelligence from various 

OSINT (Open Source Intelligence) sources and from internally managed 

sources. Intelligence data include information about IP, domains, and user 

agents; input data are checked against these sources in order to block potentially 

blacklisted events. Some OSINT sources are, for example: Alexa, Alienvault, 

BlockList, MalwareDomains, SANS, PhishTank, Tor Project. 

3. Analysis: two kinds of analyses are performed on the stored data: (i) 

advanced cybersec analytics to spot and highlight specific patterns of attacks 

(i.e., DGAs [32], IP Fluxes [33], Ransomware, Covert Channels), and (ii) 

a machine learning engine that applies machine learning algorithms to 

compare the actual behavior of each node with the usual one, and spot and 

signal possible deviations from this behavior. 

4. Visualization: the results are presented through cognitive dashboards, which 

are crucial to highlight anomalies. 

The machine learning engine combines the contributions of two unsupervised machine 

learning approaches (i.e., no data labeling is required), which are the following: 

 

■ Bayesian networks: dependences between variables are expressed in a probabilistic 

way through a directed acyclic graph (DAG), and the probability of anomaly 

compared to the graph belonging to the historical data is calculated. 
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Figure 5.1 aramis’s dashboard. 

 

■ SVM-one class: anomalies are identified in terms of distance from the 

region including all the points representing the historical data. 

Figure 5.1 shows the main dashboard of the framework. 

The following subsection describes the DGA detection approach, embedded in 

the Analysis module. 

 
5.5.1 DGA Detection Method 

The aim of the proposed DGA detection method [32] is the near-real-time 

identification of domain-flux attacks via the monitoring of a single network. To 

this purpose, the method comprises several steps of analysis. 

 

aramis’s DGA detection method 

■ Collection of unresolved DNS requests (UNRES): all UNRES requests in 

a suitable amount of time are collected in order to detect the process of a bot 

trying to connect with the related C&C. A huge and impacting increase of 

UNRES in a small amount of time may in fact indicate the tentative of connec- 

tion with several untrusted automatically generated domains. 

  
(Continued ) 
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aramis’s DGA detection method 

■ Filtering and preprocessing of UNRES: all the queries due to user errors 

(e.g., typos of popular domains) and system misconfigurations are 

removed. 

■ Outlier detection: the hosts producing the highest peaks of UNRES are 
identified. 

■ Extraction of resolved DNS requests (RES): RES near the peaks identified in the 

previous step are collected. In this way, it is possible to detect the moment when 

a bot stops querying because an existent domain has been hit and a successful 

connection has been established. 

■ Domain features extraction: all the collected RES and UNRES are mapped in 

a feature space able to embed the related linguistic and semantic 

components. 

■ Clustering: domains with similar features are grouped together in order to spot 

common patterns of the specific bot, applying specific unsupervised machine 

learning algorithms. 

■ False positives removal: in order to reduce false positives, the level of 

homogeneity of the clusters is calculated. This allows the distinction 

between true DGAs (associated with highly homogeneous clusters) from the 

expected legit unresolved DNS peaks (associated with less homogeneous 

clusters). 

 
Furthermore, we describe the details of each step. 

 
5.5.1.1 Collection of UNRES 

In order to maintain the near-real-time constraint, all the UNRES are continu- 

ously downloaded and analyzed. On average, the complete DGA detection 

algorithm takes 2 seconds to complete. 

 
5.5.1.2 Filtering and Preprocessing of UNRES 

The following filters are applied to the retrieved UNRES: 

 

■ Requests containing invalid or malformed top level domains (TLDs) are 

removed. Typically, they are due to typos or user errors. 

■ Overloaded DNS: DNS queries are sometimes overloaded so to provide 

anti-spam or anti-malware techniques. In order to reduce noise, the over- 

loaded DNS are removed. 

■ Local and private domains are removed. 
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■ White list domains (i.e., domains that are known to be trusted) are removed. 

■ Popular domains are removed. More specifically, three popular domains 

sources are considered—the top 10,000 domains in the world provided by 

Alexa [34], the web URLs of the 500 world biggest companies provided by 

Forbes [35], and the top 100 domains collected inside the network under 

analysis. In all these cases, the second- and third-level domains of an input 

domain are extracted and compared with the second- and third-level 

domains of the list of popular domains; if the Jaro-Winkler distance [36] is 

below 0.1, the input domain is considered as a misspelling of a popular 

domain and removed. 

■ Configuration words: domains containing certain substrings (e.g., words 

related to network system and structure) are filtered out because they 

represent congenital network traffic. 

■ ARPA domains are filtered out, since they are only used for reverse DNS 

lookup. 

■ If a  TLD  is  found  in  the  third  or  higher  levels,  it  is  considered  as  a 

misconfiguration of the web browser or of the particular application and 

hence it is removed. 

■ If an IP address is found in the third or following levels, it is considered as 

an internal domain and it is removed. 

The filtering phase removes the largest part of the initial UNRES; usually just 

5–10% of the queries are not filtered out and proceed through the other steps of 

the algorithm. 

 
5.5.1.3 Outlier Detection 

In order to recognize burst in the UNRES traffic, time is discretized and the number of 

UNRES for each machine in each time interval is considered part of a time series, 

which is described in terms of six different statistical methods: 

■ deviation from the expected distribution calculated via 

– Gaussian estimate 

– kernel density estimate: this estimate is a non-parametric way to estimate 

the probability density function of a random variable; the algorithm 

allows to calculate the probability to belong to a class, taking into 

consideration the density of the class around the point under analysis 

■ arima model [37]: this technique is usually applied to time series data to 

predict future points in the series (forecasting) 

■ deviation from the expected behavior calculated on a moving window via 
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– mean and standard deviation 

– median and median absolute deviation 

– interquartile range 

 
Each method can be considered as a binary classifier between ordinary points and 

outliers, and the results of all classifiers are combined with an ensemble classifier 

based on a weighted majority rule, where the chosen weight is proportional to the 

inverse of the mean number of outliers detected by that method: this means that 

an alarm reported by a method that often presents alarms has a smaller relevance 

compared to an alarm presented by a usually cautious method. Ensemble 

classifiers have been shown to perform typically better than any single classi- 

fier [38]. 

The identification of outliers in the distribution of the number of UNRES 

hence allows to detect potentially suspicious machines. 

 
5.5.1.4 Extraction of Resolved DNS Requests 

Once the suspicious machines are detected, the extraction of the related RES is 

performed. In particular, all the RES occurring in a time interval τ around the 

UNRES peaks are collected. The interval τ is set to 20 seconds; this choice 

represents a trade-off between the need of a large τ to compensate possible delays 

in the network data collection and the necessity of a small τ in order to avoid 

casual associations of RES with a cluster of UNRES. 

 
5.5.1.5 Domain Features Extraction 

The main idea of this phase is the extraction of the most relevant features of both 

RES and UNRES in order to find common patterns able to characterize a specific 

C&C connection. In this way, we are able to perform the subsequent clustering 

phase and group together domains showing a similar pattern, therefore defining 

the behavior of a particular bot. 

To this purpose, we create a common feature space for RES and UNRES, 

mapping into an array of numbers the linguistic peculiarities of the domains 

under analysis. This process is built on the assumption that pseudo-random 

domains generated by the same algorithm typically share at least some common 

linguistic attributes, while legitimate domains are not generated by an algo- rithm 

and, hence, should not show similarities in the domain structure. However, it is 

known [17] that some modern DGAs employ English diction- aries with little 

modifications; for this reason both linguistic and nonlinguistic features have been 

considered. 
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The extracted features are reported in the following. 

 

Linguistic features for domains mapping 

■ Number of levels in the domain 

■ For the second and third levels: distance of the monograms probability distribu- 

tion from the one of monograms in the English language 

■ For the second and third levels: distance of the bigrams probability distribution 

from the one of bigrams in the English language 

■ Entropy in characters distribution of the second and third levels 

■ Number of characters of the second and third levels 

 
 

5.5.1.6 Clustering 

Once the domain features are extracted, a k-means clustering [39] is performed 

on the feature space. The number of clusters Nc is set equal to a fifth of the 

number of input domains because this was found as the best trade-off between 

the need of a large Nc in order to obtain highly homogeneous groups and the need 

of a small Nc to avoid the spread of domains belonging to the same DGA into 

many different clusters. Moreover, every cluster has an associated homo- geneity 

value corresponding to the average proximity of the samples of the cluster with the 

related centroid. 

After creating the clusters, malicious clusters have to be recognized; they are 

identified as follows: 

 

■ Clusters formed by both RES and UNRES and where the number of 

UNRES is higher than the number of RES 

■ Clusters that contain only UNRES 

In both cases, we assign an anomaly indicator A to each malicious cluster 

proportional to its value of homogeneity. Therefore, A has minimum value       A 

0 (no anomaly detected) and maximum value A 1 (maximum anomaly detected). 

The two kinds of clusters contain, respectively, DGAs that eventually contacted 

a C&C, and DGA attempts that did not find a C&C. Thus, A for     the second 

case is reduced by a corrective factor λfail 0:8. A is hence defined by the following 

equation: 
 

A 
1 — dcentroid if C & C is found 

ð1 — dcentroidÞλfail if C & C is not found 

where dcentroid is the distance from the centroid of the related cluster. 

ð5:1Þ 
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5.5.1.7 False Positive Removal 

The anomaly indicator of each cluster is rescaled in order to reduce false positives. 

The effect of this rescaling is to further decrease low values of A (usually 

associated with false positives), to highlight large values of A and to enhance the 

differences in the interval 0:3; 0:75 , which has been recognized in the training 

phase as the overlapping region between the most uncertain false positives and 

true positives. 

 
5.5.2 Experimental Evaluation 

The DGA detection algorithm described above was evaluated within two different 

experimental designs: 

 

■ Forty DGA snippets belonging to different malware families (including 

banker trojans, ransomwares, worms) were used to inject real DGA network 

traffic into an ad hoc network (malware lab, see Table 5.1). The malware 

families of the DGA snippets cover all the most relevant DGA-attack 

scenarios (see Table 5.2 for a complete list). 

– The LAN of a real company (described in Table 5.1) was observed for 

a 15-day-long experimental session. 

 
5.5.2.1 First Experiment 

The first round of experiments consisted in 40 DGA snippets belonging to different 

malware families used to simulate real DGA traffic inside the malware lab, which is 

described in Table 5.1. In order to simulate the successful connection to the C&C, 

a technique similar to sinkholing [16,40] was used: before the injection of the traffic 

generated by each snippet, a couple of the domains produced by the snippet were 
 

 

Table 5.1 Network Description 
 

 
Real Network Malware Lab 

Number of machines 288 269 

Number of clients 209 185 

Average number of connections 136 k/hour 452 k/hour 

Average number of UNRES 791/hour 14 k/hour 

Average number of RES 59 k/hour 184 k/hour 



9780367191542C05.3D 138 [123–146] 17.7.2019 2:02PM 

 

 

138 ■ Botnet 

 
 

registered in the FakeDns of the malware lab. Each registered domain was associated 

to an IP address of a honeypot running a web server.1 

For each malware, Table 5.2 contains the following information: 

 
■ Malware type 

■ Domain layout, i.e., elementary components of the generated domains [18] 

■ Domain length (fixed or variable) 

■ Specific names of the malware; aliases of the malware names are reported in 

square brackets 

■ Number of clusters containing resolved DNS requests 

■ Anomaly indicator A 

From Table 5.2 it is possible to notice that the proposed DGA detection 

framework successfully detected all the malware variants with a high anomaly 

indicator. Moreover, all the malicious RES have been identified, thus giving the 

possibility to detect all the active C&Cs, which were reported to the appropriate 

OSINT repositories. 

 
5.5.2.2 Second Experiment 

The LAN of a real company was observed for a 15-day-long experimental session, 

in order to provide a real case test of the proposed solution. We considered 21.5 

millions of queries, of which 1650 are related to DGA attacks. 

To evaluate the performances, we distinguished between RES and UNRES 

requests: the RES case represents the riskiest situation, since the complete 

domain-flux attack took place; in this case, therefore, the first concern is the 

avoidance of false negatives, while some false positives might be tolerated; on the 

contrary, the UNRES situation is less risky since it indicates that the potential 

malware unsuccessfully tried to connect to the C&C and a higher false negative 

rate might be tolerated. 

Results reported a 100% detection accuracy of DGA attacks for both cases. 

Moreover, during the experimental evaluation the false positive rate resulted equal 

to zero for the RES case, hence allowing to completely distinguish the real attacks 

from the normal traffic. Also, for the UNRES case, the false positive rate was kept 

very low at 0.02%. This rate is comparable with the false positive rate obtained 

by [19]; however, it is important to underline that the proposed framework has 

been tested over 40 different malware families, while in [19] just two malware 

variants were taken into consideration. 

 

 
1 Besides the DNS registered in the experiment, other domains were resolved, revealing the presence of active 

C&Cs or sinkholes. 



 

 

Table 5.2 Malware Description and Detection Results 

   

 

Malware names [aliases] 

Fobber [Tinba v3] 

Ranbyus 

 

 

 

 

0.9841 

0.9842 

 

 

 

 

 

 

 

 

 

 
 

Alphabetic
Tinba [TinyBanker,Zusy] 6 0.9937

  Qakbot 2 0.9864

 Variable Ramnit 1 0.8885

  Vawtrak [Neverquest,Snifula] 2 0.9638

Alphabetic + seed Fixed Banjori [MultiBanker 2,BankPatch(er)] 3 0.9955

Banking Trojan Fixed Qadars v3 1 0.9850

  Newgoz [GameoverZeus] 3 0.9926

Alphanumeric 
Variable

Shiotob 2 0.9615

   ZeusBot 1 0.9731

   Murofet v3 [Licat] 1 0.9859

 Alphanumeric +DDNS Variable Corebot 4 0.9847

   Gozi ISFBa [Ursnif, Snifula,Papras] 2 0.9766

 Dictionary Variable Gozi ISFBb [Ursnif, Snifula,Papras] 3 0.9776

   Rovnix 3 0.9875

Botnet Alphabetic Fixed PushDO [Pandex, Cutwail] 2 0.9995

 Alphabetic +DDNS Variable Kraken v1 [Bobax,Oderoor] 5 0.9834

 Alphabetic Variable Necurs 2 0.9664

Exploit kit Alphabetic Variable Blackhole 3 0.9924

     
(Continued )
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Table 5.2  

   

  
 

 

 

 

Fixed 

 

  

 
 

Alphanumeric 

 

Dictionary 

Fixed 

 

 
 

Fixed 

  
 

Malware names [aliases] 

Padcrypt 

DirCrypt 

Locky v3 

Dnschanger [Alureon] 

Ramdo 

Simda 

Sisron [TOMB, Trojan.Scar] 

Srizbi 

Bamital 

Nymaim 

Vidro 

Symmi 

Chinad 

Beped 

Matsnu 

Suppobox 

Proslikefan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.9984 

0.9908 

0.9784 

0.9738 

0.9959 

0.9894 

0.9984 

0.9807 

0.9964 

0.9888 

0.9643 

0.9866 

0.9816 

0.9861 

0.9822 

0.9897 

0.9267 

0.9877 

0.9957 

0.9835 
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Besides, during the experimental session, a real domain-flux attack, including 

the final contact with the C&C (RES case), has been completely detected. In fact, 

the alarms associated with this detection were investigated and led to the 

discovery of the activity of a banking trojan (VawTrak [41]). 

From these results, we can conclude that the proposed method is able to detect 

potentially infected machines in near real time and with high anomaly indicators, 

while limiting the false positives at the same time. 

 
5.5.2.3 Results and Discussion 

The experimental evaluation led to the discovery of a host infected with the 

Vawtrak malware. Vawtrak, also known as Neverquest, is born from Gozi, 

another banking Trojan. There are two known versions of Vawtrak, v1 and v2, 

which continue to be maintained and to receive updates. Vawtrak also supports 

the use of additional modules, increasing its versatility and the threat it poses 
 
 

Table 5.3 DGA domains related to the Vawtrak malware 

agifdoc.top agifdocg.top agufdir.top alehnomsuc.top 

asarwitdi.top awoflucgufs.top canefsarg.top cegafsergo.top 

ciwifla.top cogefdi.top cogotducnet.top conitsuc.top 

cuwufsecwet.top cuwutlecnim.top edehnumsu.top edohgimli.top 

eduhwemsarw.top egatlorwe.top egifdarnot.top enatluh.top 

ewefsihnutl.top fadicnifleh.top faducwim.top falehwi.top 

fedurga.top felucnitdor.top fesecnit.top fiduhwomde.top 

fisehwif.top fodurgutdo.top fosarge.top fosehwotd.top 

fosuhgitl.top fulehwiml.top fulirwufs.top fulocgemsa.top 

hanatlahgo.top hawotseh.top hewutsohgif.top higotlerwo.top 

hiwafduhw.top hiwatsuh.top hogetdoc.top hogutlacwe.top 

honamlecn.top     huwamdahgi.top      iducnofd.top      ilacwatd.top 

madacnuts.top      malacgim.top       medurne.top       mesohna.top 

midacwims.top   modehgamlo.top    modicgofdor.top    mulehwa.top 

musucnits.top     ogefsir.top      osuhnimdocg.top      osuhwimso.top 

owamsurw.top    owetlurwoml.top    ranomsuhgaf.top    ronitso.top 

runamdohg.top ruwetlocwem.top tadernatda.top talahwumsec.top 

talocwumder.top   tedihwutlac.top   telurwimlu.top    tesehniml.top 

tiluhwomd.top     tisecnemleh.top     tolehnatla.top     udacnofl.top 

udihgotlarn.top       ulacwitde.top       ulahgut.top        ulihnef.top 

ulorwumder.top usirnit.top usuhgutsa.top uwiflecnatl.top 
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once it has infected a host. The most commonly distributed modules enable 

Vawtrak to steal credentials from various applications installed in the host, 

provide the attackers with remote access, use the host as a proxy, steal certificates, 

log the user’s keystrokes, and use webinjects. 

During the experimental evaluation, Vawtrak produced 116 not resolved 

requests and 54 resolved requests. Examples of domains used by the DGA are 

reported in Table 5.3. 

 
5.6 Conclusion 

In this chapter, an overview of state-of-the-art DGA detection methods has been 

provided. Among the number of different approaches, the analysis has been focused 

on the DNS-based detection techniques. In particular, we have presented state-of- 

the-art supervised or signature-based approaches and explained their possible limita- 

tions; then, we have discussed the unsupervised techniques, with particular focus over 

an effective DGA detection algorithm based on a single network monitoring. 

The proposed approach comprises of two steps: the first step involves the detection 

of a bot looking for the C&C and thus querying many automatically generated 

domains. The second phase consists of the analysis of the resolved DNS requests in 

the same time interval. The linguistic and semantic features of the collected unresolved 

and resolved domains are then extracted in order to cluster them and identify the 

specific bot. Finally, clusters are analyzed in order to reduce false positives. 
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Our team presented a paper titled “Fast Flux Service Network Detection 

via Data Mining on Passive DNS Traffic”, written by our colleagues from 

the Aramis team. 

 

In this paper, we report on an effective fast flux detection algorithm based on 

the passive analysis of the DNS traffic of a corporate network. The proposed 

method is based on the near-real-time identification of different metrics that 

measure a wide range of fast flux key features; the metrics are combined via 

a simple but effective mathematical and data mining approach. The 

proposed solution has been evaluated in a one-month experiment over the 

LAN of an enterprise network, with the injection of 47 attacks associated with 

9 different malware campaigns. All the fast flux domains were detected with 

a very low false positive rate and the comparison of performance indicators 

with a state-of-the-art work shows a remarkable improvement. An in-depth 

active analysis of a list of malicious fast flux domains confirmed the reliability of 

the metrics used in the proposed algorithm and allowed for the identification 

of more than 10000 IPs, some of which are likely associated with compromised 

hosts. These IPs turned out to be part of two notorious botnets, namely Dark 

Cloud and SandiFlux, to the description of which we therefore contributed. 
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Abstract. In the last decade, the use of fast flux technique has be-
come established as a common practice to organise botnets in Fast Flux
Service Networks (FFSNs), which are platforms able to sustain illegal
online services with very high availability. In this paper, we report on
an effective fast flux detection algorithm based on the passive analy-
sis of the Domain Name System (DNS) traffic of a corporate network.
The proposed method is based on the near-real-time identification of
different metrics that measure a wide range of fast flux key features;
the metrics are combined via a simple but effective mathematical and
data mining approach. The proposed solution has been evaluated in a
one-month experiment over an enterprise network, with the injection of
pcaps associated with different malware campaigns, that leverage FFSNs
and cover a wide variety of attack scenarios. An in-depth analysis of a
list of fast flux domains confirmed the reliability of the metrics used in
the proposed algorithm and allowed for the identification of many IPs
that turned out to be part of two notorious FFSNs, namely Dark Cloud
and SandiFlux, to the description of which we therefore contribute. All
the fast flux domains were detected with a very low false positive rate;
a comparison of performance indicators with previous works show a re-
markable improvement.

Keywords: automated security analysis, malware detection, network
security, passive traffic analysis, botnet, fast flux

1 Introduction

During the last few years, the number of cyberattacks with relevant financial
impact and media coverage has been constantly growing. As a result, many
companies and organizations have been reinforcing investment to protect their
networks, with a resultant increase in the research on this topic [1].

Over the last two decades, botnets have represented one of the most promi-
nent sources of threats on the internet: they are networks of compromised com-
puters (popularly referred to as zombies or bots), which are controlled by a
remote attacker (bot herder). Botnets provide the bot herder with massive re-
sources (bandwidth, storage, processing power), allowing for the implementation
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of a wide range of malicious and illegal activities, like spam, distributed denial-of-
service attacks, spreading of malware (such as ransomware, exploit kits, banking
trojans, etc.) [19, 21–23, 25].

A common practice for bot herders is to organise their bots in Fast Flux
Service Networks (FFSNs): some bots, chosen from a pool of controlled machines,
are used as front-end proxies that relay data between a (possibly unaware) user
and a protected hidden server. The technique behind these structures is the
fast flux, i.e., the rapid and repeated changing of an internet host and/or name
server resource record in a Domain Name System (DNS) zone, resulting in rapid
changes of the IP addresses to which the domain resolves. FFSNs make the
tracing and the recovery of all the infected components extremely difficult, thus
allowing for a very high availability for illegal online services related to phishing,
dumps stores, and distribution of ransomware, info stealers, and click fraud [24,
29, 32, 36, 37, 39].

FFSNs have been known to cybersecurity experts for more than one decade
[25, 36], but in the last few years it has been obtaining a spotlight [20, 21, 23, 27,
35, 38]. The renewed interest is related to the studies of large botnets (e.g., Dark
Cloud, also known as Zbot network, and the most recent SandiFlux) which
make massive usage of fast flux [2, 24, 28]. The standard approach to FFSNs
detection is via the so-called active DNS analysis, i.e., by actively querying
some domains and by collecting and analysing the answers: this strategy has
been widely explored and allows for extensive analyses of botnets [20, 25–30, 32,
33].

Instead, the algorithm described in the present work relies on passive anal-
ysis of the DNS traffic of a single network: it detects the fast flux domains
without interaction with the network traffic, thus making the algorithm com-
pletely transparent inside and outside the monitored network; in particular, it
cannot be uncovered by the attackers, who often control the authoritative name
servers responsible for responding to DNS queries about their fast flux domains
[34]. The proposed detection approach has been evaluated in a 30-day-long ex-
perimental session over the network described in Sect. 5. The performance is
much higher compared to a state-of-the-art analogous method [37]. Moreover,
the analysis was performed near-real-time: the average execution time of the
algorithm was 25 seconds, while the average time between two subsequent runs
of the algorithm was 3 minutes (see Sect. 5 for more details).

As an additional test of the proposed approach, we examined the IPs —
collected via active DNS analysis — associated with a list of fast flux domains
gathered from [3–6]. This investigation confirmed the reliability of the metrics
used in the fast flux detection method proposed herein and allowed for the
identification of more than 9000 IPs, likely to be associated with compromised
hosts, which turned out to be part of two notorious botnets, namely Dark Cloud
and SandiFlux, to the description of which we therefore contribute.

The paper is structured as follows. In Sect. 2, we discuss the most relevant
features of FFSNs, with an outline of related works. In Sect. 3, we briefly describe
aramis, the monitoring platform that contains the fast flux detection method
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which is the focus of this paper and which is described thoroughly in Sect. 4.
Section 5 comprises a detailed discussion of the experimental results of the test
of the proposed algorithm, while Sect. 6 contains further investigations on the
FFSNs underlying some fast flux domains. Finally, we discuss possible future
developments in Sect. 7.

2 Background and Related Work

One of the first works providing an overview of the fast flux attacks was the
Honeynet project [36]. In order to explain hidden operations executed by botnets,
authors gave examples of both single and double fast flux mechanisms: while the
first rapidly changes the A records of domains, the latter frequently changes
both the A records and the NS records of a domain. The interested reader can
find a review and a classification of fast flux attacks in [39].

Content Delivery Network (CDN) and Round-Robin DNS (RRDNS) are le-
gitimate techniques which are used by large websites to distribute the load of
incoming requests to several servers. The response to a DNS query is evaluated
by an algorithm which chooses a pool of IPs from a large list of available servers
whose number can be of the order of thousands (see Sect. 6 for some examples).
As a result, the behaviour in terms of DNS traffic is very similar to the one of
a FFSN, and indeed CDNs and RRDNSs represent the typical false positives in
fast flux detection algorithms [25, 29, 37].

A large number of approaches have been proposed to detect FFSNs and
to distinguish them from legitimate CDNs and RRDNSs. Most of them rely
on active DNS analysis, which allows for the collection of a large number of IPs
associated with a domain, thus simplifying the FFSNs detection, but they require
the resolutions of domains that may be associated with malicious activities [23,
25, 27, 29, 32]. These methods, despite being appropriate for a deep analysis of
FFSNs, have relevant drawbacks in implementations oriented to the monitoring
of corporate networks [34, 37].

Some FFSN detection methods based on passive DNS analysis have been
proposed. Some of them analyse the DNS traffic of a whole Internet Service
Provider (ISP), thus taking in input the DNS traffic generated by many differ-
ent networks. Perdisci et al. [34], in particular, performed a large-scale passive
analysis of DNS traffic. They extract some relevant features from the DNS traffic
and classified the domains via a C4.5 decision tree classifier. Berger et al. [21]
and Stevanovic et al. [38] proposed two other approaches to analyse the DNS
traffic of an ISP. Both methods are based on a tool called DNSMap and classify
the bipartite graphs formed by the collected fully qualified domain names and
the associated IPs. The first method searches for generic malicious usage of DNS,
while the latter focuses on FFSNs.

Soltanaghaei and Kharrazi [37], finally, proposed a method for passive DNS
analysis of a network which requires a history for each domain to be evaluated
and achieved 94.44% detection rate and 0.001% false positive rate in their best
experiment. Our algorithm employs a similar approach, but, with a more careful
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choice of the metrics achieves better results, while performing a near-real-time
analysis (see Sects. 4 and 5 for details).

3 aramis

The proposed fast flux detection technique is included in a commercially avail-
able network security monitoring platform called aramis (Aizoon Research for
Advanced Malware Identification System) [7, 22]. This software automatically
identifies different types of malware and attacks in near-real-time, it is provided
with dedicated hardware1, and its structure can be outlined in four phases:

1. Collection: sensors located in different nodes of the network gather data ,
preprocess them in real-time and send the results to a NoSQL database.

2. Enrichment: data are enriched in the NoSQL database using the information
obtained from the aramis Cloud Service, which collects intelligence from
various OSINT sources and from internally managed sources.

3. Analysis: stored data are processed by means of two types of analysis: (i)
advanced cybersecurity analytics which highlight specific patterns of attacks,
among which DGAs [22] and fast flux, and (ii) a machine learning engine
which spots deviations from the usual behaviour of each node of the network.

4. Visualization: results are presented in ad hoc dashboards to show and high-
light anomalies.

The cycle of the four phases restarts after a time ∆t which slightly depends
on the traffic flow analysed and amounts to 182 ± 36 seconds on the network
described in Sect. 5. A time ∆t of this magnitude is the best trade-off between
the near-real-time requirement and the need of a large amount of data in order
to have statistically significant results.

4 Detection Method

The aim of the proposed detection method is the near-real-time identification
of malicious fast flux via the passive monitoring of the DNS traffic of a single
network. To this purpose, the method is composed of three steps of analysis. (i)
Filtering: queries which are known to be non-malicious (e.g., popular domains,
known CDNs, local domains, etc.) are removed. (ii) Metrics identification: some
key indicators are calculated over the queries remaining after filters. (iii) Identi-
fication: the metrics are used to identify malicious fast flux among the queries.

The three steps have been constructed by combining information on the FF-
SNs — acquired from the literature — with a simple but effective mathematical
and data mining approach. The parameters of the model have been estimated
over a validation set formed by 30-days of DNS traffic captured from the net-
work described in Table 1, and by 12 pcaps associated with different malware
campaigns that leverage FFSNs, collected from the public repository [8].

1 E5-2690 2.9GHz x 2 (2 sockets x 16 cores) 16 x 8GB RAM, 1.1TB HDD
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Table 1. Validation-network description

30-days total one-hour average

N. of machines 261 -

N. of connections 80 M 111 k

N. of resolved A-type DNS queries 12 M 17 k

N. of unique resolved A-type DNS queries 381 k 527

4.1 Filters

The algorithm receives resolved DNS requests of type A (which return 32-bits
IPv4 addresses, in accordance with [9]) collected near-real-time from the mon-
itored network. The first step consists in the application of the filters reported
in Table 2 to the retrieved queries.

Table 2. Filters description

Type Description

White list domains

Domains known to be trusted, e.g., the ones associated with
crypto currencies (if their use is allowed in the network): the

underlying peer-to-peer networks are, in many respects, similar to
botnets.

Popular domains
Top 100 domains collected inside the network under analysis, web
URLs of the 500 world biggest companies provided by Forbes [10]

and top 10000 domains in the world provided by Alexa [11].

Configuration words
Domains containing certain substrings (e.g., related to network

system and structure) represent congenital traffic.

Overloaded DNS
In order to provide anti-spam or anti-malware techniques, DNS
queries are sometimes overloaded, thus causing possible noise.

Local and corporate
domains

These domains represent a high percentages of the legitimate
DNS traffic in a corporate network.

CDNs and RRDNSs

These are the most common sources of false positives in fast flux
detection algorithms; aramis (see Sect. 3) includes a function

(with a structure similar to that of the proposed fast flux
detection algorithm) which periodically updates a white list with
the main CDNs and RRDNSs detected in the monitored network,

thus allowing for a substantial speed up.

Queries with large
TTL

According to the literature, malicious fast flux are characterised
by a short TTL [25, 32, 37], therefore queries with a TTL larger

than 1800 s are filtered.

4.2 Metrics Identification

The DNS requests that survive the filters described in Sect. 4.1 are integrated
with the history of the previous 30 days, saved locally. This allows for a more
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accurate evaluation of the behaviour of the domains, however an assessment is
already possible when the first answer is received. Among the remaining domains
there are many new emerging CDNs2 and, in order to distinguish them from
the FFSNs — which is the main challenge in malicious fast flux detection — we
identified some key indicators. Some of these indicators can be already evaluated
after a single query (we call them static metrics), while others need a certain
history (history-based metrics). The information regarding Autonomous Systems
(ASs) and public networks used in the following metrics are retrieved from [12].

Static Metrics. The metrics described in this section are evaluated over all
the IPs collected.

Maximum Answer Length. A relevant metric for the detection of malicious
fast flux is the number of IPs returned in a single A query. In particular, we
consider the maximum mal of such value: a malicious fast flux is believed to
typically have a mal larger than a legitimate fast flux [25, 39].

Cumulative Number of IPs. Malicious fast flux typically employ a larger num-
ber of IPs (nIP) compared with CDNs, due to the lower reliability of each single
node [37].

Cumulative Number of Public Networks. Since the botnet underlying a ma-
licious fast flux contains infected machines which are typically distributed quite
randomly in different networks, the same is expected to be true for the IPs
retrieved by the related queries [25, 39]. For this reason a malicious fast flux
typically has a number of public networks (nnet) larger than a legitimate CDN.

Cumulative Number of ASs. For the same reason described above, FFSNs
typically have a number of ASs (nAS) larger than legitimate CDNs.

AS-Fraction. The analysis of some preliminary fast flux pcaps revealed that,
despite being in general very useful, in some cases the absolute number of AS
was not a distinctive feature, while its ratio with the number of IPs was more
appropriate. For this reason we defined the metric

fAS =
nAS − 1

nIP
, (1)

which quantifies the degree to which the IPs are dispersed in different AS. This
quantity takes values from fAS = 0 (when all the IPs are in the same AS) to
fAS ∼ 1 (when each IP is in a different AS and the number of IPs is large).
In order to preserve these properties and to encode the additional information
about the typical scales associated with nAS for CDNs and FFSNs respectively,
we rescaled fAS as described below. The first rescaling is

x −→ θ(nAS − n0)

[
1− e−

(
nAS−n0

s

)2]
x, (2)

where x = fAS, θ(t) is the Heaviside step function (i.e., θ(t) is 1 for positive
t and 0 otherwise), s is a scale representing the average number of ASs in a

2 The filter mentioned in Table 2 detects a CDN only when it has a sufficient history.
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typical CDN and n0 is a threshold for nAS below which the behaviour is not
suspicious from the viewpoint of the number of ASs.3 The rescaling in Eq. 2
reduces fAS when its value is comparable with the nAS expected in a CDN. The
second rescaling applies Eq. 2 to the quantity x = 1 − fAS and reduces it (i.e.,
increases fAS) when nAS is comparable with that of a typical FFSNs. In this
case the scale s represents the average number of ASs in a typical malicious fast
flux, while n0 is a threshold for nAS below which we do not increase fAS.4

IP-Dispersion. The analysis of the distribution of the retrieved IPs is another
way to understand to which degree the structure underlying FFSN is random
and chaotic. We transform the set of the n IPs associated with each query into
the corresponding positions in the 32-bits IPv4 address space x1, ...xn,5 and we
define

dIP =
1

ln
median(∆x), (3)

where ∆x = {xi − xi−1}ni=2, the {xi} have been ordered so that xi ≥ xi−1,
and ln is the average distance if the n IPs were uniformly distributed in the
whole public IPs address space. The IP-dispersion takes value from dIP = 1 (i.e.,
when the IPs are uniformely distributed among the whole public IP space) to
dIP = 0 (i.e., when the IPs are clearly subdivided into a few clusters of close
addresses). A similar idea was used by Nazario et al. [32], who evaluated the
average distance among the {xi}, but their metric is more sensitive to outliers
and it is not normalised in the interval [0,1], which is crucial to combine it with
the other metrics, as described in Sect. 4.3. The FFSNs analysis described in
Sect. 6 confirmed that the indicator in Eq. 3 is able to catch the key distribution
properties of IPs in a FFSN.

History-Based Metrics. The history is constructed by subdividing the queries
retrieved from the monitored network in subsequent chunks: each chunk contains
at least 10 queries and spans a time interval of at least one hour; these two con-
ditions are the minimal requirements to make the metric definitions meaningful
from a statistical point of view. The metrics described in this section are evalu-
ated only if it is possible to construct at least two chunks.

Change in the set of IPs. It is a common belief that, while a CDN typically
returns IPs taken from a stable IP-pool, a malicious fast flux employs the avail-
able nodes in the FFSN, which often evolves quickly, and therefore its IP-pool
changes from time to time [25, 39]. We defined a metric which measures in a very

3 We set s = 2.5 and n0 = 3; the first is the average nAS for the top 4 largest CDNs
detected in the validation set, while the latter is half the minimum of nAS detected
for a fast flux in the validation set.

4 We set s = 40 in agreement with Ref. [39], which states that a typical FFSN has a
set of IPs distributed among 30–60 ASs, and n0 = 5, which is the maximum number
of ASs detected for a CDN in the validation set.

5 To each IP n1.n2.n3.n4 we associated x = 2563 n1 + 2562 n2 + 256n3 + n4.
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simple way the change in the IP-pool:

cIP =
nIP
ncIP
− 1, (4)

where ncIP is the number of unique IPs present in the chunk averaged over all
chunks, while nIP has been defined in Sect. 4.2. This quantity takes the value
cIP = 0 when all the IPs are found in each chunk, i.e., when the IP-pool is stable
and it is explored completely in each chunk (and therefore ncIP = nIP). On the
other hand, if the IP-pool changes substantially from one chunk to the other,
the total number of IPs nIP is much larger than the average number of IPs ncIP
found in a chunk, and therefore cIP becomes large (it is unbounded above). The
same considerations apply to all the following metrics.

Change in the Set of Public Networks. While CDNs typically use IPs taken
from the same few public networks, malicious fast flux frequently introduce IPs
from new networks [25, 39]. We measure the change in the set of public networks
by means of cnet = nnet/n

c
net − 1, where ncnet is the network-analogous of ncIP.

Change in the Set of ASs. The generalisation of the previous argument to
the next aggregation level brings us to the analysis of the changes in the number
of AS involved. We introduce therefore cAS = nAS/n

c
AS − 1, where ncAS is the

AS-analogous of ncIP.

Change in the Answer Length. Another relevant indicator is the change in
the number of IPs retrieved in each query [25, 39]. We measure this change by
means of cal = mal/m

c
al − 1, where mc

al is the mal-analogous of ncIP.

4.3 Fast Flux Domains Identification

A preliminary step for fast flux domains identification is the filtering of the
queries with dIP = 0, because this removes many false positives with no loss
in terms of true positives. The next step is the use of the metrics defined in
Sect. 4.2 to discriminate among malicious fast flux and CDN. Instead of using a
machine learning ‘black box’ classifier, we combine the indicators in a controlled
way, in order to encode some other domain knowledge and to allow for an easier
interpretation of the results. Foremost we aggregate the static and history-based
metrics separately, and finally we combine them into a single anomaly indicator
A, which can straightforwardly be used to classify the queries between fast flux
and legit domains.

Aggregation of the Static Metrics. We normalised the metrics nIP, nnet,
nAS, and mal in the interval [0,1], so that for all of them the value 0 corresponds
to a typical CDN, while 1 corresponds to the expected behaviour of a malicious
fast flux. This is achieved by means of a square-exponential scaling of the form

x −→ 1− e−( x−x0
s )

2

, (5)
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where x0 = 1 is the minimum value for the metric before the rescaling, s is
different for each metric and represents an intermediate scale between a typi-
cal CDN behaviour and a behaviour clearly ascribed to a malicious fast flux.6

Equation 5 rescales x = x0 (i.e., the smallest possible value for x), x = s + x0
(i.e., a value intermediate between the typical CDN behaviour and the typical
malicious behaviour), and x � s (i.e., a value much larger than the scale s) to
0, 1/2, and 1 respectively.

After the scaling, all the quantities nIP, nnet, nAS, mal, fAS, and dIP are com-
parable: they take values in the interval [0,1] and for each of them a value close
to 0 denotes a typical CDN behaviour, while a value close to 1 indicates a very
suspicious behaviour. We combined these indicators with a weighted arithmetic
mean in a unique static index7

Astat = wIPnIP + wnetnnet + wASnAS + walmal + wffAS + wddIP. (6)

In order to avoid the evaluation of misleading indicators due to lack of data, the
metrics fAS and dIP are evaluated only if a minimum number of IPs is collected,
while mal is evaluated only if at least one answer contains more than one IP.
When one metric is absent, its value is set to 0 (in the absence of data we apply
a sort of ‘presumption of innocence’, to reduce false positives), its weight in the
evaluation of Astat is decreased by a factor 20 (because the innocence assessment
is only due to the absence of data), and the other weights are proportionally
rescaled so that

∑
i wi = 1.

Aggregation of the History-Based Metrics. As already mentioned, the
metrics cIP, cnet, cAS, and cal defined in Sect. 4.2 are unbounded above. We
normalise them in the interval [0,1] by means of Eq. 5 with x0 = 0 (as the
minimum value for these metrics before the rescaling is 0).8 After the rescaling,
all the metrics take values in the interval [0,1] and for each of them a value close
to 0 corresponds to a very stable behaviour, while a value close to 1 indicates a
behaviour with high variability over time. We combine then in a unique indicator
three of the history-based metrics (the fourth, i.e., cal is instead used in Eq. 8)
with a weighted arithmetic mean9

Adyn = w′IPcIP + w′netcnet + w′AScAS. (7)

6 The values of s were set based on information retrieved from the literature ([39]
and references therein) and the validation set. More in detail, we chose sIP = 24,
snet = 12, sAS = 6, and sal = 10.

7 The weights reflect the importance of the corresponding metric in the correct classi-
fication in the validation set; the optimal values are wIP = wnet = 0.03, wAS = 0.13,
wal = 0.09, wf = 0.54, and wd = 0.18.

8 The values of s were set based on information retrieved from the literature and the
validation set. More in detail, we chose sIP = snet = 1 and sAS = sal = 0.5.

9 The weights reflect the importance of the corresponding metric in the validation set;
the optimal values are w′IP = 0.07, w′net = 0.23, and w′AS = 0.7.



10 Lombardo, P., Saeli,S., et al.

Final Aggregation. We combine the indicators Astat, Adyn, and cal into a
single anomaly indicator A, which should be used to classify the queries between
fast flux and legit domains. In order to reduce false positives, we differentiate on
the basis of the quantity fAS, and we define

A =

{∑
i wiAi if fAS ≥ 0.5∏
i(Ai)

wi if fAS < 0.5
, (8)

where {Ai} = {Astat, Adyn, cal} and {wi} are the related weights.10 Analogously
to the averages in Eqs. 6 and 7, when one metric is absent, its value Ai is set
to 0 (not anomalous), its weigth wi is decreased by a factor 20, and the other
weights are proportionally rescaled so that

∑
j wj = 1.

Note that in Eq. 8 a (weighted) arithmetic mean is used when the AS-fraction
is large, while a (weighted) geometric mean is used when the AS-fraction is small;
this implies that in the latter case a value close to 0 for one of the indicators Ai

gives a stronger penalty to A.
The detection of malicious fast flux has thus been reduced to a very simple

one-dimension classification problem: only queries with A > Ath are labeled as
fast flux, where the optimal threshold (Ath = 0.25) has been found by maximiz-
ing the performance on the validation set. In order to increase the readability of
the results, we applied a sigmoid-shaped rescaling which maps A = 0 and A = 1
onto themselves and Ath onto 0.5.

5 Experimental Evaluation

The fast flux detection algorithm described in Sect. 4 was evaluated over a test
set comprising 30 days of ordinary traffic of the network described in Table 3
with the injection of fast flux traffic which covers all the most relevant fast flux
attack scenarios (see Table 4 for a complete list). Note that the test set has
been only used to test the performance of the algorithm and not to modify the
algorithm or the parameters.

Table 3. Test-network description

30-days total one-hour average

N. of machines 391 -

N. of client machines 286 -

N. of connections 398 M 552 k

N. of resolved A-type DNS queries 75 M 104 k

N. of unique resolved A-type DNS queries 1.3 M 1.9 k

The fast flux traffic has been injected in the network via 47 pcaps — collected
from the public repositories [3–5] — which are associated with 9 different mal-

10 An optimisation procedure on the validation set produced similar weight for the
three quantities: wstat = 0.27, wdyn = 0.38, and wal = 0.35.



Fast Flux Detection via Data Mining on Passive DNS Traffic 11

ware campaigns. Table 4 provides a brief description of each malware campaign
with the following information:

– the category, i.e., the malware type associated with the campaign
– the name of the campaign
– the list of the domains present in each pcap of the campaign, with the

anomaly indicator A associated by the algorithm to each of them
– the average value of A for each campaign

Table 4. Malware description

Category Campaign Domains (A) 〈A〉
Banking
Trojan

ZBOT miscapoerasun.ws (0.85) 0.85

Banking
Trojan

Dreambot rahmatulahh.at (0.89); ardshinbank.at (0.92) 0.91

Banking
Trojan

Ursnif
widmwdndghdk.com (0.90); bnvmcnjghkeht.com (0.85);

qqweerr.com (0.85)
0.87

VBA
Dropper

Doc Dropper
Agenta

aassmcncnnc.com (0.90); iiieeejrjrjr.com (0.87);
ghmchdkenee.com (0.88)

0.88

Ransomware Locky
thedarkpvp.net (0.83); nsaflow.info (0.91); mrscrowe.net

(0.93); sherylbro.net (0.87); gdiscoun.org (0.90);
scottfranch.org (0.90)

0.89

Ransomware Nymaim

iqbppddvjq.com (0.91); danrnysvp.com (0.91);
pmjpdwys.com (0.93); vqmfcxo.com (0.86);
gbfeiseis.com (0.91); danrnysvp.com (0.87);

iuzngzhl.com (0.97); vpvqskazjvco.com (0.84);
jauudedqnm.com (0.93); dtybgsb.com (0.93);
tuzhohg.com(0.93); sxrhysqdpx.com (0.86);

arlfbqcc.com (0.93)

0.90

Banking
Trojan

Zeus Panda
farvictor.co (0.89); fardunkan.co (0.89); bozem.co

(0.84); farmacyan.co (0.87); fargugo.co (0.90);
manfam.co (0.85)

0.87

Banking
Trojan

GOZI ISFB

qdkngijbqnwehiqwrbzudwe.com (0.80);
jnossidjfnweqrfew.com (0.90); zxciuniqhweizsds.com

(0.86); huwikacjajsneqwe.com (0.92);
efoijowufjaowudawd.com (0.92);

onlyplacesattributionthe.net (0.90); nvvnfjvnfjcdnj.net
(0.86); popoiuiuntnt.net (0.89); zzzzmmmsnsns.net

(0.80); popooosneneee.net (0.83); liceindividualshall.net
(0.87); roborobonsnsnn.net (0.93)

0.87

Ransomware GandCrab zonealarm.bit (0.90) 0.90

a Doc.Dropper.Agent-6332127-0 [13]

Table 4 clearly shows that the proposed method successfully detected all the
fast flux domains with a high anomaly indicator. In fact the value of A averaged
over all campaigns is equal to 0.89.
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Table 5. Results

A > 0 A > 0.5

True Positives (TP ) 47 (100%) 47 (100%)
False Negatives (FN) 0 (0%) 0 (0%)
False Positives (FP ) 6 (<0.001%) 4 (<0.001%)

In Table 5 we summarise the performance of the algorithm: in the second
column we consider the total number of outputs of the algorithm (i.e., the num-
ber of domains with A > 0) while in the third column we report the number of
outputs labeled as fast flux (i.e., the number of domains with A > 0.5). On the
rows we report the following quantities

– True Positives rate (TP ): the number of unique fast flux domains detected;
– False Negatives rate (FN ): the number of unique fast flux domains incorrectly

labeled as legit;
– False Positives rate (FP ): the number of unique legit domains incorrectly

labeled as fast flux.

All rates are given as absolute values and as percentages for each type on the
corresponding number of unique domains in input.

A remarkable result is the absence of false negatives: this determines in-
deed a 100% recall, also known as detection rate, R = TP /(TP + FN ). In or-
der to evaluate the algorithm also with a metric that takes into account the
false positives rate FP , we computed the F-score F = 2P R/(P + R) (where
P = TP /(TP + FP )), obtaining F = 95.9%.

As a comparison, [37] obtained R = 94.4% and F = 89.5% in their best
experimental result. We can therefore conclude that the proposed method is able
to detect queries to fast flux domains in a corporate network in near-real-time
and with high anomaly indicators, limiting false positives at the same time.

6 Fast Flux Service Networks Analysis

As an in-depth analysis of the algorithm described in Sect. 4, we examined the
IPs associated to a list of fast flux domains. The IPs were collected via active
DNS analysis and precisely with an FFSN-spanner which resolved systematically
domains taken from a list of malicious domains; these domains were gathered via
a scouting activity from the public repositories [3–6]. With the purpose of hiding
the FFSN-spanner activity from the bot herders, we randomized the sequence
of the queries and the waiting times among two subsequent queries, while im-
plementing an anonymization technique based on the use of the Tor network. In
order to overcome a limitation of the DNSPort resolver [14], which returns only
the first answer for domain lookup, we adopted ttdnsd, the Tor TCP DNS Dae-
mon. This solution allows for making arbitrary DNS requests by converting any
UDP request into a TCP connection, which is given to Tor through the SOCKS
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Fig. 1. Bipartite graph representing the IPs (small red circles) associated with each
domain (large green circle). An arc indicates that the IP has been given in answer to
a query resolving the domain.

port. The request is then forwarded anonymously through the Tor network and
reaches one of the ‘open’ recursive name servers via the Tor Exit node.

Over the period 09.03.2018–15.04.2018, we collected 9861 IPs (of whom 9049
are public IPs and 812 are reserved IPs) associated with 61 domains, represented
in Fig. 1: it can be noted that different domains (large green circles) share some
IPs (small red circles). In Fig. 2 we represent instead the overlap Oij among all
the pairs (i, j) of the top 30 domains (for number of collected IPs), defined as

Oij =
|Xi ∩Xj |
|Xi ∪Xj |

, (9)

where Xi is the pool of IPs associated with the i-th domain and |X| is the the
cardinality of X.

Both Figs. 1 and 2 show a clear subdivision of the domains in two indepen-
dent clusters. The analysis of the fast flux domains revealed that the clusters
correspond to two large FFSNs, namely Dark Cloud (on the right in Figs. 1
and 2) and SandiFlux (on the left in Figs. 1 and 2). Indeed, in the first clus-
ter we recognised domains that are associated with phishing activities, Dumps
Stores and malware campaigns (e.g., ZBOT, Dreambot, Ursnif, Locky, and the
last GOZI ISFB campaign) that leverage Dark Cloud [15, 16, 24, 28], while in the
latter we found domains associated with the Nymaim campaign, which has been
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Fig. 2. Overlap representation Oij (defined in Eq. 9) among all the pairs (i, j) of the
top 30 domains (for number of retrieved IPs). Darker tones represent larger overlaps.

related with Sandiflux [2]. We also discovered that Doc.Dropper.Agent-6332127-
0 [13], Zeus Panda [17], and GandCrab campaigns belong to Dark Cloud, even
though the latter is believed to leverage SandiFlux [2].

It is worth noting that the sets of IPs in the two FFSNs that we identified are
highly overlapped, but no IP is shared among the two groups. Note also that the
clusters that we identify as Dark Cloud and Sandiflux are similar, respectively,
to the Hosting Network and C&C Network described in [28].

The subdivision in two different FFSNs is reflected in the different geolocation
of the relative IPs: Fig. 3 shows that, while the IPs retrieved from SandiFlux
spread from USA to Europe and Asia, the ones retrieved from Dark Cloud
are mainly localised in eastern Europe. In Fig. 4 we further investigate the
top 10 countries represented in each botnet: Ukraine, Romania, Bulgaria, and
Russia confirmed to be the most represented countries in Dark Cloud [24], while
SandiFlux’s IPs are found mainly in USA and China. It can be noticed that
many IPs associated with the domains of SandiFlux are reserved by Iana [18].
This is probably due to a malicious usage of a practice called domain parking
[31] to introduce noise into black lists. Figures 3 and 4 are based on the IP-geoloc
tables downloaded from Maxmind [12].

The two FFSNs described above are a good testing ground for the metrics
introduced in Sect. 4.2: in Table 6 we report a summary of some of these metrics
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Fig. 3. Geolocation of the IPs retrieved for the two FFSNs

evaluated over the two FFSNs and three large CDNs. Note that two of the CDNs
we observed (namely, www.nationalgeographic.it and cdn.wetransfer.net) have a
very large number of IPs, making thus nIP a misleading indicator in these cases.
This is not a problem for the proposed algorithm, since, as explained in Sect. 4,
nIP is used in combination with many other metrics.

Table 6. Summary of some relevant metrics

nIP nAS nresc
IP nresc

AS crescAS f resc
AS dIP

Dark Cloud 2856 354 1 1 1 1 1.2 10−3

Sandiflux 6203 1517 1 1 1 1 0.69
www.nationalgeographic.it 2478 1 1 0 0 0 2.6 10−6

cdn.wetransfer.net 2734 1 1 0 0 0 2.9 10−6

neo4j.com 29 1 0.74 0 0 0 5.1 10−4

In Fig. 5 we represent the histogram of the frequencies of the first byte in the
IP-pool of the two FFSNs and one medium-size CDN. A clear difference between
botnets can be noticed. In particular SandiFlux, where the IP-distribution is
not so far from a uniform random distribution and the CDN ‘imap.gmail.com’,
where the IP-distribution has a few high peaks. Figure 5 clearly shows that
simple indicators as the mean and the variance (represented by the corresponding
Gaussian distribution in Fig. 5) do not catch the nature of the distribution,
while the metric dIP defined in Eq. 3 is much more appropriate. In particular
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Fig. 5. Histogram of the frequencies of the first byte in the IP-pool associated with
the two botnets analysed and with one large CDN (bin-size=2).

dIP = 1.2 10−3 for Dark Cloud and dIP = 0.69 for SandiFlux, while the CDN
‘imap.gmail.com’ has dIP = 6.2 10−6.

7 Conclusions

In this paper, we proposed a fast flux detection method based on the passive
analysis of the DNS traffic of a corporate network. The analysis is based on
aramis security monitoring system. The proposed solution has been evaluated
over the LAN of a company, with the injection of 47 pcaps associated with 9
different malware campaigns that leverage FFSNs and cover a wide variety of
attack scenarios. All the fast flux domains were detected with a very low false
positive rate and the comparison of performance indicators with a state-of-the-
art work shows a remarkable improvement. An in-depth active analysis of a list
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of malicious fast flux domains confirmed the reliability of the metrics used in
the proposed algorithm and allowed for the identification of more than 9000 IPs
likely to be associated with compromised hosts. These IPs turned out to be part
of two notorious botnets, namely Dark Cloud and SandiFlux, to the description
of which we therefore contribute.

As a future development, we plan to introduce in the algorithm a metric
related to the use of reserved IPs, which we observed to be extensively present
in SandiFlux. Another planned development is the inspection of the overlap in
terms of IPs among the most suspicious domains, as we saw that many IPs are
shared among domains in the same botnet.
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Abstract—During the last number of years, the use of Domain
Generation Algorithms (DGAs) has increased with the aim of
improving the resiliency of communication between bots and
Command and Control (C&C) infrastructure. In this paper,
we report on an effective DGA-detection algorithm based on
a single network monitoring. The first step of the proposed
method is the detection of a bot looking for the C&C and thus
querying many automatically generated domains. The second
phase consists on the analysis of the resolved DNS requests in the
same time interval. The linguistic and semantic features of the
collected unresolved and resolved domains are then extracted
in order to cluster them and identify the specific bot. Finally,
clusters are analyzed in order to reduce false positives. The
proposed solution has been evaluated over (1) an ad-hoc network
where several known DGAs were injected and (2) the LAN
of a company. In the first experiment, we deployed different
families of malware employing several DGAs: all the malicious
variants were detected by the proposed algorithm. In the real case
scenario, the algorithm discovered an infected host in a 15-day-
long experimental session, while producing a low false-positive
rate during the same period.

I. INTRODUCTION

Cybercrime constitutes one of the most serious threats

to the current society, with heavy and sometimes dramatic

consequences for many companies, organizations and single

individuals [14, 18, 20, 26, 30]. During the last number of

years, a key role in cybercrime has been played by botnets:

these are networks of compromised computers (popularly

referred to as zombies or bots), which are controlled by

a remote attacker (popularly referred to as a bot herder)

through specific Command and Control (C&C) channels. The

strength of the botnet resides in the fact that it can be a

highly distributed and highly changeable network, making the

tracing and the recovery of all the infected components very

difficult, and therefore allowing a secure and stable platform

for the implementation of a wide range of malicious and illegal

activities such as the spreading of ransomwares, exploit kits,

banking trojans, etc. [4, 7, 11, 12, 17, 23, 25, 32].

In botnets, the bot herder and bots can exchange information

using different protocols; P2P-based botnets have a more

robust C&C structure that is difficult to detect and take down,

but they are typically harder to implement and maintain.

In order to combine the simplicity of centralized C&Cs with

the robustness of P2P-based structures, many attackers employ

HTTP botnets that locate their C&C servers through the

dynamic generation of domains using a Domain Generation

Algorithm (DGA), also known as domain-flux. With this

technique, each bot, using a precalculated seed value known to

the bot herder (e.g., the current date), automatically generates

hundreds or thousands of pseudo-random domain names that

represent candidate C&C domains. The bot sends DNS queries

until it connects to the IP address associated to a resolved

domain. The key advantage of this strategy is that even if one

or more C&C domain names or IP addresses are identified

and recovered, the bots will query the next set of automatically

generated domains and it will eventually get the IP address of a

relocated C&C server. DGA provides therefore a remarkable

level of agility and a very resilient communication channel

between bots and C&C, making it one of the most used

technique in botnet control [6, 7, 8, 12, 15, 24, 33].

For these reasons, DGA detection is of crucial importance

in cyber security. A number of different approaches to DGA-

detection have been implemented, but DNS-based analysis

is one of the most appropriate to obtain quick responses,

since it does not need file dumps and it only requires the

analysis of a small part of the network traffic (in particular,

it can ignore packets’ payloads). For this reason, many recent

works focused on automatically recognizing DGA within DNS

traffic, whenever occurring. Many efforts have been made to

use supervised or signature-based approaches [5] but these

have obtained limited results in the highly dynamic DGA

realm. Therefore, some works have applied unsupervised tech-

niques on DNS traffic data provided by some Internet Service

Provider [9, 22, 28, 29] or retrieved by collecting the DNS

traffic of a single network [15, 21, 33].

In this paper, we report on an effective DGA-detection al-

gorithm which analyzes the DNS traffic of a single network in

near-real-time: if we consider a network as the one described

in Tab. I, the average execution time of the algorithm is 2

seconds, while the average time between two subsequent runs

of the algorithm is 3 minutes and 48 seconds (see Sec. III for

more details). The ability to detect an attack in near-real-time

is crucial, as it allows for a quick reaction and it is the only

way to prevent a potentially severe damage to the company

which is using the network under attack [14, 31].

The remainder of the paper is structured as follows. In

Sec. II we briefly describe aramis, the monitoring platform

which contains the DGA detection method which is the focus



of this paper and which is described thoroughly in Sec. III.

Finally, we discuss the experimental results in details in

Sec. IV and possible future developments in Sec. V.

II. ARAMIS

The proposed DGA-detection algorithm has been deployed

in aramis (Aizoon Research for Advanced Malware Identifi-

cation System), a network security monitoring platform able

to automatically identify a wide range of malware and attacks

in near-real-time. aramis software is bundled with dedicated

hardware1, and its structure can be summarized in four phases:

1) Collection: sensors are placed in various nodes of the

network. Each sensor gathers the data from its segment

of the network, pre-analyzes them in real-time and sends

the results to a NoSQL database.

2) Enrichment: inside the NoSQL database, data is enriched

with information coming from the aramis Cloud Service,

which collects intelligence from various OSINT sources

and from internally managed sources.

3) Analysis: two kinds of analyses are executed on the

stored data: (i) advanced cybersec analytics to spot and

highlight specific attacks, among which DGAs, and (ii)

a machine learning engine which compares the behavior

of each node with the usual one.

4) Visualization: the results are presented through cognitive

dashboards, which are crucial to highlight anomalies.

The cycle of the four phases restarts after a period ∆t which

slightly depends on the quantity of analyzed traffic. On the

network described in Tab. I ∆t = 228 ± 92 seconds, which

represents the best trade-off between the need of many network

data in order to have statistically significant results and the

requirement of near-real-time analysis.

III. DGA DETECTION METHOD

The aim of the proposed DGA-detection method is the

near-real-time identification of domain-flux attacks via the

monitoring of a single network. To this purpose, the method

is composed of several steps of analysis:

• Collection of unresolved DNS requests (UNRES): in

order to detect a bot trying to connect with the C&C, all

the UNRES in a suitable amount of time are collected.

The sudden and huge increase of UNRES may in fact

indicate the tentative of connection with several untrusted

automatically generated domains.

• Filtering and preprocessing of UNRES: all the queries

due to user errors (e.g., typos of popular domains) and

system misconfigurations are removed.

• Outlier detection: the hosts producing the highest peaks

of UNRES are identified.

• Extraction of resolved DNS requests (RES): since a bot

stops querying when an existent domain is hit and a

successful connection is established, RES near the peaks

identified in the previous step are collected.
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• Domain features extraction: all the collected RES and

UNRES are mapped in a feature space able to embed the

linguistic and semantic components (see Sec. III-E).

• Clustering: domains which are similar according to the

features extracted in the previous step, are grouped to-

gether in order to spot common patterns of the specific

bot.

• False positives removal: the level of homogeneity of

the clusters is calculated. This allows the distinction

between true DGAs (associated with highly homogeneous

clusters) from the expected legit unresolved DNS peaks

(associated with less homogeneous clusters).

In the following we describe the details of each step.

A. Collection of UNRES

aramis framework operates in near-real-time, therefore all

the UNRES are continuously downloaded and analyzed. On

the network described in Sec. IV-B, the complete DGA-

detection algorithm takes an average time of 2 seconds to

complete. Anyway, as discussed in Sec. II, the algorithm is

integrated in aramis, which takes an average time ∆t of about

3 minutes and 48 seconds to collect all network data and

perform the analyses. After this process, aramis produces a

detailed analysis of the network risk and restarts a new cycle

of analysis.

B. Filtering and preprocessing of UNRES

The following filters are applied to the retrieved UNRES:

• Requests containing invalid or malformed Top Level

Domains (TLDs) are removed. Typically, they are due

to typos or user errors.

• Overloaded DNS: DNS queries are sometimes overloaded

so to provide anti-spam or anti-malware techniques. In

order to reduce noise, the overloaded DNS are removed.

• Local and private domains are removed.

• White list domains (i.e., domains that are known to be

trusted) are removed.

• Popular domains are removed. More specifically, three

popular domains sources are considered: the top 10000

domains in the world provided by Alexa [2], the web

URLs of the 500 world biggest companies provided by

Forbes [3] and the top 100 domains collected inside the

network under analysis. In all these cases, the second

and third level domains of an input domain are extracted

and compared with the second and third level domains of

the list of popular domains; if the Jaro-Winkler distance

[27] is below 0.1, the input domain is considered as a

misspelling of a popular domain and removed.

• Configuration words: domains containing certain sub-

strings (e.g., words related to network system and struc-

ture) are filtered out, because they represent congenital

network traffic.

• ARPA domains are filtered out, since they are only used

for reverse DNS lookup.



• If a TLD is found in the third or higher levels, it is

considered as a misconfiguration of the web browser or

of the particular application and hence it is removed.

• If an IP address is found in the third or following levels,

it is considered as an internal domain and it is removed.

The filtering phase removes the largest part of the initial

UNRES; usually just a 5-10% of the queries are not filtered

out and proceed through the other steps of the algorithm.

C. Outlier Detection

In order to recognize burst in the UNRES traffic, time is

discretized and the number of UNRES for each machine in

each time interval is considered part of a time series, which

is described in terms of 6 different statistical methods:

• deviation from the expected distribution calculated via

– Gaussian estimate

– kernel density estimate

• arima model [10]

• deviation from the expected behavior calculated on a

moving window via

– mean and standard deviation

– median and median absolute deviation

– interquantile range

Each method can be considered as a binary classifier

between ordinary points and outliers, and the results of all

classifiers are combined with an ensemble classifier based

on a weighted majority rule2, which has been shown to

perform typically better than any single classifier [13]. The

identification of outliers in the distribution of the number of

UNRES allows to detect potentially suspicious machines.

D. Extraction of resolved DNS requests

Once the suspicious machines are detected, the extraction

of the related RES is performed. In particular, all the RES

occurring in a time interval τ around the UNRES peaks are

collected. The interval τ is set to 20 seconds; this choice

represents a trade-off between the need of a large τ to

compensate possible delays in the network data collection and

the necessity of a small τ in order to avoid casual associations

of RES with a cluster of UNRES.

E. Domain features extraction

The purpose of this phase is the creation of a common

feature space for RES and UNRES, able to map into an

array of numbers the linguistic peculiarities of the domains

under analysis. Pseudo-random domains generated by the same

algorithm typically share at least some common linguistic

attributes, while legitimate domains are not generated by an al-

gorithm and, hence, should not show similarities in the domain

structure. It is known however [15] that some modern DGAs

employ English dictionary words with little modifications; for

2The weight used for each method is proportional to the inverse of the
mean number of outliers detected by that method: this means that an alarm
reported by a method which often presents alarms has a smaller relevance
compared to an alarm presented by a usually cautious method.

this reason both linguistic and non-linguistic features have

been considered 3. Therefore, the main idea is to extract the

most relevant features of both RES and UNRES in order to

find common patterns able to characterize a specific C&C

connection. In this way, we are able to perform the subsequent

clustering phase and group together domains showing a similar

pattern, therefore defining the behavior of a particular bot.

The extracted linguistic features are the following:

• Number of levels in the domain

• For the second and third levels: distance of the mono-

grams probability distribution from the one of mono-

grams in the English language

• For the second and third levels: distance of the bigrams

probability distribution from the one of bigrams in the

English language

• Entropy in characters distribution of the second and third

levels

• Number of characters of the second and third levels

TABLE I
NETWORK DESCRIPTION

Real Network Malware Lab

N. of machines 288 269

N. of clients 209 185

Average N. of connections 136 k / hour 452 k / hour

Average N. of UNRES 791 / hour 14 k / hour

Average N. of RES 59 k / hour 184 k / hour

F. Clustering

Once the domain features are extracted, a k-means clus-

tering [16] is performed on the feature space. The number

of clusters Nc is set equal to a fifth of the number of

input domains, because this was found as the best trade-off

between the need of a large Nc in order to obtain highly

homogeneous groups and the need of a small Nc to avoid the

separation of domains belonging to the same DGA into many

different clusters. Moreover, every cluster has an associated

homogeneity value corresponding to the average proximity of

the samples of the cluster with the related centroid.

After creating the clusters, malicious clusters have to be

recognized; they are identified in the following way:

• Clusters formed by both RES and UNRES and where the

number of UNRES is higher than the number of RES;

• Clusters which only contain UNRES.

In both cases, we assign an anomaly indicator A to each

malicious cluster proportional to its value of homogeneity.

Therefore, A has minimum value A = 0 (no anomaly detected)

and maximum value A = 1 (maximum anomaly detected).

The two kinds of clusters contain respectively DGAs which

eventually contacted a C&C and DGA attempts which did not

find a C&C. Thus, A for the second case is reduced by a

corrective factor λfail = 0.8.

3This choice allowed for the identification of English-dictionary-based
DGAs (see Sec. IV-A), e.g., Gozi ISFB, Rovnix, Matsnu, Suppobox.



TABLE II
MALWARE DESCRIPTION AND DETECTION RESULTS

Malware type Domain layout Domain

length

Malware names C&C / sinkhole

alive

Clusters Resolved

domains

A

Banking Trojan

Alphabetic

Fixed
Fobber [Tinba v3] Yes 40 2 0.9841

Ranbyus Yes 38 5 0.9842
Tinba [TinyBanker, Zusy] Yes 29 6 0.9937

Variable
Qakbot Yes 71 2 0.9864
Ramnit Yes 40 1 0.8885

Vawtrak [Neverquest, Snifula] No 82 2 0.9638
Alphabetic + seed Fixed Banjori [MultiBanker 2, BankPatch(er)] Yes 116 3 0.9955

Alphanumeric

Fixed Qadars v3 No 52 1 0.9850

Variable

Newgoz [Gameover Zeus] Yes 42 3 0.9926
Shiotob No 57 2 0.9615
ZeusBot Yes 84 1 0.9731

Murofet v3 [Licat] Yes 44 1 0.9859
Alphanumeric + DDNS Variable Corebot Yes 55 4 0.9847

Dictionary Variable
Gozi ISFBa [Ursnif, Snifula, Papras] Yes 30 2 0.9766

Gozi ISFBb [Ursnif, Snifula, Papras] Yes 51 3 0.9776
Rovnix No 174 3 0.9875

Botnet
Alphabetic Fixed PushDO [Pandex, Cutwail] No 63 2 0.9995

Alphabetic + DDNS Variable Kraken v1 [Bobax, Oderoor] Yes 70 5 0.9834
Alphabetic Variable Necurs Yes 39 2 0.9664

Exploit Kit Alphabetic Variable Blackhole No 63 3 0.9924

Ransomware Alphabetic
Fixed

Cryptolocker No 24 2 0.9984
Padcrypt Yes 84 4 0.9908

Variable
DirCrypt No 16 2 0.9784
Locky v3 Yes 30 3 0.9738

Trojan Horse

Alphabetic
Fixed

Dnschanger [Alureon] No 57 1 0.9959
Ramdo No 131 3 0.9894
Simda Yes 34 3 0.9984

Sisron [TOMB, Trojan.Scar] Yes 10 1 0.9807
Srizbi No 14 1 0.9964

Variable
Bamital Yes 21 1 0.9888
Nymaim No 48 3 0.9643

Alphabetic + DDNS Variable
Vidro Yes 130 4 0.9866

Symmi Yes 49 2 0.9816

Alphanumeric
Fixed Chinad Yes 17 1 0.9861
Variable Beped No 35 2 0.9822

Dictionary Variable
Matsnu No 74 3 0.9897

Suppobox Yes 52 1 0.9267

Worm Alphabetic
Fixed Tempedreve No 38 2 0.9877

Variable
Proslikefan Yes 98 5 0.9957

Pykspa [Pykse,Skyper, SkypeBot] Yes 58 5 0.9835

aEmploying ”luther” dictionary
bEmploying ”nasa” dictionary

G. False positive removal

The anomaly indicator of each cluster is rescaled in order

to reduce false positives. The effect of this rescaling is to

further decrease low values of A (usually associated with

false positives), to highlight large values of A and to enhance

the differences in the interval [0.3, 0.75], which has been

recognized in the training phase as the overlapping region

between the most uncertain false positives and true positives.

IV. EXPERIMENTAL EVALUATION

The DGA-detection algorithm described above was evalu-

ated within two different experimental designs:

• 40 DGA snippets belonging to different malware families

were used to inject real DGA network traffic into an

ad-hoc network (malware lab, see Tab. I). The malware

families of the DGA snippets include banker trojans,

ransomwares, worms (see Tab. II for a complete list) and

cover all the most relevant DGA-attack scenarios.

• The LAN of a real company (described in Tab. I) was

observed for a 15-day-long experimental session.

A. Network traffic injection

The first round of experiments consisted in 40 DGA snippets

belonging to different malware families used to simulate real

DGA traffic inside the malware lab, which is described in

Tab. I. In order to simulate the successful connection to the

C&C, a technique similar to sinkholing [19, 8] was used:

before the injection of the traffic generated by each snippet, a

couple of the domains produced by the snippet were registered

in the FakeDns of the malware lab. Each registered domain

was associated to an IP address of a honeypot running a web



server 4.

Tab. II provides a synthetic description of the malware used

in the experiments and the related detection results. For each

malware, it contains the following information:

• Malware type

• Domain layout, i.e., elementary components of the gen-

erated domains [24]

• Domain length (fixed or variable)

• Specific names of the malware; aliases of the malware

names are reported in square brackets

• C&C / sinkhole alive, i.e., a field indicating if at least one

domain (in addition to the ones registered as described

in Sec. IV-A) was resolved during the experiments

• Number of clusters, i.e., number of groups of similar

domains found by the algorithm described in Sec. III-F

• Number of clusters containing resolved DNS requests

• Anomaly indicator A, as described in Sec. III-F

From Tab. II it is possible to notice that the proposed DGA-

detection framework successfully detected all the malware

variants with a high anomaly indicator. In fact, the value of

A averaged on all the samples is 0.9806. Moreover, all the

malicious RES have been identified, thus giving the possibility

to detect all the active C&Cs, which were reported to the

appropriate OSINT repositories.

B. Real company scenario

The second round of experiments was performed through

the monitoring of the LAN of a real company, in order to

provide a real case test of the proposed solution. In this way,

we were able to reliably estimate the false positive rate.

aramis was run for a 15-day-long experimental session. In

order to evaluate the performances, we distinguished between

RES and UNRES requests. The RES case represents the riski-

est situation, since the complete domain-flux attack took place;

in this case, therefore, the first concern is the avoidance of false

negatives, while some false positives might be tolerated.

On the contrary, the UNRES situation is less risky since

it indicates that the potential malware unsuccessfully tried to

connect to the C&C. Therefore, in the latter case, a higher

false negative rate might be tolerated.

Out of the 285 k unresolved domains of the whole network

collected during the observation, the algorithm detected 37 and

1720 domains respectively for the RES and the UNRES case.

We collected results with two different granularities:

• A > 0: in this case all the alarms are considered.

• A > 0.7: in this case only the alarms with Anomaly

Indicator greater than 0.7 (high risk) are considered.

Tab. III reports the obtained results. In particular, it is

possible to notice that a real domain-flux attack, including the

final contact with the C&C (RES case), has been completely

detected. In fact, the alarms associated with this detection

were investigated and led to the discovery of the activity of a

banking trojan (VawTrak [1]). In this case, as it can be noticed

4Besides the DNS registered in the experiment, other domains were
resolved, revealing the presence of active C&Cs or sinkholes.

TABLE III
REAL NETWORK RESULTS

UNRES case A > 0 A > 0.7
DGA Not DGA DGA Not DGA

Detected 1.65 k 70 1.65 k 42

Undetected 0 285 k 0 285 k

RES case A > 0 A > 0.7
DGA Not DGA DGA Not DGA

Detected 37 0 37 0

Undetected 0 21.3 M 0 21.3 M

in Tab III, all malicious clusters were detected with A > 0.7.

Moreover, it is possible to observe that the false positive rate is

equal to zero for the RES case, hence allowing to completely

distinguish the real attacks from the normal traffic.

Besides, we also analyzed the UNRES case. It is possible

to notice that all the 1.65 k malicious UNRES were detected

with A > 0.7, while the false positive rate is very low: the

0.02% of the 285 k non-malicious UNRES are presented in

output by the algorithm, and only the 0.01% has A > 0.7.

Therefore, we can conclude that the proposed method is able

to detect potentially infected machines in near-real-time and

with high anomaly indicators, while limiting the false positives

at the same time.

V. CONCLUSIONS

In this paper, we proposed a DGA-detection method based

on the analysis of the DNS traffic of a single network; the

analysis requires aramis security monitoring system.

The proposed solution has been evaluated over two net-

works: (i) an ad-hoc network, where traffic generated with

DGA snippets belonging to different DGA attacks was injected

and (ii) the LAN of a real company. In the first experiment,

all the malicious variants were detected, while in the real case

scenario the algorithm discovered an infected host. Thus, the

experimental evaluation has confirmed the effectiveness of the

proposed approach.

As a future development, we plan to refine the clustering

algorithm by adding weights to domain levels in the linguis-

tic features extraction phase and by recognizing the layout

(alphanumeric or alphabetic). Another aspect that we plan to

improve is the filtering phase, with the introduction of a filter

for Content Delivery Networks (CDN) and Round Robin DNS

(RRDNS), with the development of a CDN/RRDNS identifi-

cation algorithm. Other developments include the introduction

of a specific dictionary for the country where the network is

located, the filtering of queries used by some browser (e.g.,

Chrome and Chromium) to determine if the user is on a

network that intercepts and redirects requests for nonexistent

hostnames, and the refinement of local domains identification.

REFERENCES

[1] https://www.blueliv.com/downloads/network-insights-

into-vawtrak-v2.pdf.

[2] http://www.alexa.com.

[3] http://www.forbes.com.



[4] K. Alieyan, A. ALmomani, A. Manasrah, and M. M.

Kadhum. A survey of botnet detection based on dns.

Neural Computing and Applications, pages 1–18, 2015.

[5] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and

N. Feamster. Building a dynamic reputation system for

dns. In USENIX security symposium, pages 273–290,

2010.

[6] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou,

S. Abu-Nimeh, W. Lee, and D. Dagon. From throw-away

traffic to bots: Detecting the rise of dga-based malware.

In USENIX security symposium, volume 12, 2012.

[7] A. H. R. A. Awadi and B. Belaton. Multi-phase irc botnet

and botnet behavior detection model. arXiv preprint

arXiv:1501.03241, 2015.

[8] T. Barabosch, A. Wichmann, F. Leder, and E. Gerhards-

Padilla. Automatic extraction of domain name gener-

ation algorithms from current malware. In Proc. NATO

Symposium IST-111 on Information Assurance and Cyber

Defense, Koblenz, Germany, 2012.

[9] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Ex-

posure: Finding malicious domains using passive dns

analysis. In Ndss, 2011.

[10] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M.

Ljung. Time series analysis: forecasting and control.

John Wiley & Sons, 2015.

[11] D. Dagon, G. Gu, C. P. Lee, and W. Lee. A taxonomy

of botnet structures. In Computer Security Applications

Conference, 2007. ACSAC 2007. Twenty-Third Annual,

pages 325–339. IEEE, 2007.

[12] C. J. Dietrich, C. Rossow, F. C. Freiling, H. Bos,

M. Van Steen, and N. Pohlmann. On botnets that use

dns for command and control. In Computer Network

Defense (EC2ND), 2011 Seventh European Conference

on, pages 9–16. IEEE, 2011.

[13] T. G. Dietterich et al. Ensemble methods in machine

learning. Multiple classifier systems, 1857:1–15, 2000.

[14] T. Grance, K. Kent, and B. Kim. Computer security

incident handling guide. NIST Special Publication,

800:61, 2004.

[15] M. Grill, I. Nikolaev, V. Valeros, and M. Rehak. Detect-

ing dga malware using netflow. In Integrated Network

Management (IM), 2015 IFIP/IEEE International Sym-

posium on, pages 1304–1309. IEEE, 2015.

[16] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-

means clustering algorithm. Journal of the Royal Statisti-

cal Society. Series C (Applied Statistics), 28(1):100–108,

1979.

[17] G. Hogben, D. Plohmann, E. Gerhards-Padilla, and

F. Leder. Botnets: Detection, measurement, disinfection

and defence. European Network and Information Secu-

rity Agency, 2011.

[18] M. Korolov. Cyber security review. Treasury & Risk,

2012.

[19] F. Leder, T. Werner, and P. Martini. Proactive botnet

countermeasures: an offensive approach. The Virtual

Battlefield: Perspectives on Cyber Warfare, 3:211–225,

2009.

[20] F. Lemieux. Investigating cyber security threats: Explor-

ing national security and law enforcement perspectives.

2011 Developing Cyber Security Synergy, page 63, 2011.

[21] M. Mowbray and J. Hagen. Finding domain-generation

algorithms by looking at length distribution. In Soft-

ware Reliability Engineering Workshops (ISSREW), 2014

IEEE International Symposium on, pages 395–400.

IEEE, 2014.

[22] S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero.

Phoenix: Dga-based botnet tracking and intelligence. In

International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment, pages 192–211.

Springer, 2014.

[23] E. Soltanaghaei and M. Kharrazi. Detection of fast-flux

botnets through dns traffic analysis. Scientia Iranica.

Transaction D, Computer Science & Engineering, Elec-

trical, 22(6):2389, 2015.

[24] A. K. Sood and S. Zeadally. A taxonomy of domain-

generation algorithms. IEEE Security & Privacy,

14(4):46–53, 2016.

[25] M. Stevanovic and J. M. Pedersen. On the use of machine

learning for identifying botnet network traffic. Journal

of Cyber Security and Mobility, 4(3):1–32, 2016.

[26] R. W. Taylor, E. J. Fritsch, and J. Liederbach. Digital

crime and digital terrorism. Prentice Hall Press, 2014.

[27] W. E. Winkler. String comparator metrics and enhanced

decision rules in the fellegi-sunter model of record link-

age. 1990.

[28] S. Yadav, A. K. K. Reddy, A. Reddy, and S. Ranjan.

Detecting algorithmically generated malicious domain

names. In Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement, pages 48–61. ACM,

2010.

[29] S. Yadav and A. N. Reddy. Winning with dns failures:

Strategies for faster botnet detection. Security and pri-

vacy in communication networks, pages 446–459, 2012.

[30] T. Yadav and R. A. Mallari. Technical aspects of cyber

kill chain. arXiv preprint arXiv:1606.03184, 2016.

[31] X. Yin, W. Yurcik, Y. Li, K. Lakkaraju, and C. Abad.

Visflowconnect: Providing security situational awareness

by visualizing network traffic flows. In Performance,

Computing, and Communications, 2004 IEEE Interna-

tional Conference on, pages 601–607. IEEE, 2004.

[32] H. R. Zeidanloo, M. J. Z. Shooshtari, P. V. Amoli,

M. Safari, and M. Zamani. A taxonomy of botnet

detection techniques. In Computer Science and Informa-

tion Technology (ICCSIT), 2010 3rd IEEE International

Conference on, volume 2, pages 158–162. IEEE, 2010.

[33] H. Zhang, M. Gharaibeh, S. Thanasoulas, and C. Pa-

padopoulos. Botdigger: Detecting dga bots in a single

network. In Proceedings of the IEEE International

Workshop on Traffic Monitoring and Analaysis, 2016.



© 2020 aramis poster, aizoOn technology consulting. All rights reserved 
 

                                                                                                                                                                       

  ICPS 2017 
INTERNATIONAL CONFERENCE  

OF PHYSICS STUDENTS  

   Turin, ITALY  

   August 7th – 14th, 2017  

 

 

What is ICPS?  

The International Conference of Physics Students (ICPS) is the main event organized each year by 

the International Association of Physics Students (IAPS). The main purpose of the conference is to 

create an opportunity for physics students coming from all over the world to gather, discuss science 

and technology and practice presenting their research.  

Keynote speakers include world-leading scientists and researchers in multiple areas of physics, while 

young students and researchers have an unparalleled opportunity to present and debate their 

research projects and analysis outcomes. Among the core themes debated on the occasion, we 

cite quantum physics and technology, computational physics and complex systems.  

 

Our contribution        

Our team presented a scientific poster on “ARAMIS – AizoOn Research 

for Advanced Malware Identification System”.  

 

In this poster, we describe the Aramis platform, our solution for network 

monitoring analysis, entirely designed and developed by aizoOn thanks to 

the convergent use of advanced Machine Learning algorithms, Threat 

Intelligence and Advanced Cyber Analytics. Artificial intelligence is globally 

recognized as a powerful ally in the early detection of advanced cyber 

threats. The effectiveness of these mathematical tools applied to cyber 

security depends on the capacity of algorithms to eliminate the 

“background noise”, to read data as an expert analyst would do and to 

provide the Security Operation Center with monitoring tools and useful 

information for a fast identification of real threats. Aramis is a scalable network 

monitoring solution developed to be easily and organically integrated into the 

ICT Risk Management process.     
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The Machine Learning Engine analyzes network traffic with two different unsupervised 
classification algorithms.

Each Advanced Cybersec Analytics recognizes a specific attack (e.g., domain generation 
algorithm1, drive by download2, ransomware, IP-flux) or analyzes a specific aspect of the 
network traffic (e.g., network topology, IP geolocation, communication protocol, user agent, 
scheduled operations, constant data transmission).

• Cybercrime is one of the most serious threats to the current society
• The knowledge and implementation of cyber security guidelines is crucial
• Malware and attacks rapidly evolve in time and are very heterogeneous (around 80% of malware found in breach investigations is specific to that organization)

While the advanced cybersec analytics automate cybersec experts investigations as much as possible, the machine learning engine aims to spot any deviations from the usual behaviors in the network 
traffic. The combination of these two different approaches  allowed for the following detection results (found after one month of aramis execution on the network of a medium-size company):

• 1 banking trojan (VawTrak)
• anomalous files exchange (4 • 104 files/hour) from a client to advertising URLs

• 2 network and resource abuses
• 1 attempt of an Apache PHP remote exploit
• 106 unhautorized TOR connections

• Redirection chain from legitimate web server (1,2) to malware distributor (7,8)
• Download of an exploit kit
• Download of a malware (e.g., ransomware, banker trojan) 
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Each event is evaluated over:
• a model representing the machine involved
• a model representing a homogeneous class of machines (e.g., clients, servers, etc.)
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The variables used for both BN and SVM include communication protocol and service, 
destination port, duration and volume of the HTTP requests and ws, status code, user agent, 
etc.
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• Provides a communication channel   bots         command and control (C&C) 
• Each bot generates many pseudo-random domains
• One of them is associated with the C&C and it is resolved
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